OCR หรือ Optical Character Recognition เป็นเทคโนโลยีที่ใช้แปลงชนิดต่าง ๆ ของเอกสาร อาทิ เอกสารที่สแกน ไฟล์ PDF หรือภาพที่ถ่ายด้วยกล้องดิจิตอล เป็นข้อมูลที่สามารถแก้ไขและค้นหาได้
ในขั้นตอนแรกของ OCR ภาพของเอกสารข้อความจะถูกสแกน ซึ่งอาจจะเป็นภาพถ่ายหรือเอกสารที่สแกน จุดประสงค์ของขั้นตอนนี้คือการสร้างสำเนาดิจิตอลของเอกสาร แทนการถอดรหัสด้วยมือ เพิ่มเติม กระบวนการดิจิไทซ์นี้ยังสามารถช่วยเพิ่มอายุยาวนานของวัสดุเนื่อ งจากลดการจับจัดทรัพยากรที่เปราะบาง
เมื่อเอกสารถูกดิจิตอลไปแล้ว ซอฟต์แวร์ OCR จะแยกภาพออกเป็นตัวอักษรแต่ละตัวเพื่อจัดรูป นี้เรียกว่ากระบวนการแบ่งส่วน การแบ่งส่วนจะแยกเอกสารออกเป็นบรรทัด คำ แล้วค่อยแยกเป็นตัวอักษร การแบ่งแยกนี้เป็นกระบวนการที่ซับซ้อนเนื่องจากมีปัจจัยมากมายที่เข้ามาเกี่ยวข้อง -- แบบอักษรที่แตกต่างกัน ขนาดข้อความที่แตกต่างกัน และการจัดเรียงข้อความที่ไม่เหมือนใคร เพียงแค่นี้ยังมีอีก
หลังจากการแบ่งส่วน อัลกอริทึม OCR จะใช้การรู้จำรูปแบบเพื่อระบุตัวอักษรแต่ละตัว สำหรับแต่ละตัวอักษร อัลกอริทึมจะเปรียบเทียบกับฐานข้อมูลของรูปร่างตัวอักษร การจับคู่ที่ใกล้ที่สุดจะถูกเลือกเป็นตัวตนของตัวอักษร ในการรู้จำคุณสมบัติ ซึ่งเป็นรูปแบบอย่างหนึ่งของ OCR ที่ขั้นสูง อัลกอริทึมไม่เพียงแค่ศึกษารูปร่าง แต่ยังสนใจเส้นและเส้นโค้งในรูปแบบด้วย
OCR มีการประยุกต์ใช้ที่มีประโยชน์หลายอย่าง -- จากการดิจิทัลไซส์เอกสารที่พิมพ์ การเปิดใช้บริการอ่านข้อความอัตโนมัติ การปรับเปลี่ยนกระบวนการรับข้อมูลอัตโนมัติ ไปจนถึงการช่วยผู้ใช้ที่มีความบกพร่องทางการมองเห็นในการมีปฏิสัมพันธ์กับข้อความอย่างมากยิ่งขึ้น แต่ก็ควรทราบว่ากระบวนการ OCR ไม่ได้เป็นที่ถาวรและอาจทำความผิดพลาดได้โดยเฉพาะอย่างยิ่งเมื่อมีการจัดการเอกสารความละเอียดต่ำ แบบอักษรซับซ้อน หรือข้อความที่พิมพ์ไม่ดี ดังนั้น ความแม่นยำของระบบ OCR มีความแตกต่างกันอย่างมากขึ้นอยู่กับคุณภาพของเอกสารต้นฉบับและซอฟต์แวร์ OCR ที่ใช้เฉพาะสำคัญ
OCR เป็นเทคโนโลยีสำคัญในการฝึกฝนและการดิจิตอลในปัจจุบัน มันช่วยประหยัดเวลาและทรัพยากรอย่างมากโดยลดต้องการการป้อนข้อมูลด้วยมือและให้ทางเลือกที่น่าเชื่อถือ มีประสิทธิภาพในการแปลงเอกสารทางกายภาพเป็นรูปแบบดิจิตอล.
Optical Character Recognition (OCR) เป็นเทคโนโลยีที่ใช้ในการแปลงประเภทต่าง ๆ ของเอกสาร เช่น ผลงานที่สแกนด้วยกระดาษ PDF ไฟล์หรือภาพที่ถ่ายด้วยกล้องดิจิตอล ให้เป็นข้อมูลที่สามารถแก้ไขและค้นหาได้
OCR ทำงานโดยการสแกนภาพนำเข้าต่างๆหรือเอกสาร การแบ่งภาพออกเป็นตัวอักษรแต่ละตัว แล้วเปรียบเทียบแต่ละตัวอักษรกับฐานข้อมูลแบบรูปของตัวอักษรโดยใช้การจดจำรูปแบบหรือจดจำลักษณะ
OCR ถูกนำไปใช้ในหลายภาคและการประยุกต์ใช้ เช่น การเปลี่ยนเอกสา รที่พิมพ์ออกมาเป็นดิจิตอล การเปิดให้บริการอักษรเป็นเสียง การทำให้กระบวนการกรอกข้อมูลเป็นอัตโนมัติ และสนับสนุนผู้ที่มีความบกพร่องทางการมองเห็นให้สามารถสัมผัสปฏิสัมพันธ์กับข้อความได้ตรงตามความต้องการ
อย่างไรก็ตาม ทั้งที่เทคโนโลยี OCR ได้พัฒนามาอย่างมาก แต่ยังไม่มีความสมบูรณ์ การมีความแม่นยำมักจะขึ้นอยู่กับคุณภาพของเอกสารเดิมและรายละเอียดของซอฟต์แวร์ OCR ที่ใช้
ถึงแม้ว่า OCR ถูกออกแบบมาสำหรับข้อความที่พิมพ์ แต่ระบบ OCR ที่ระดับสูงบางระบบสามารถจดจำลายมือที่ชัดเจน สอดคล้องได้ อย่างไรก็ดี ทั่วไปแล้วการจดจำลายมือมีความแม่นยำน้อยกว่า เนื่องจากมีการผันแปรของรูปแบบการเขียนของแต่ละคน
ใช่ ซอฟต์แวร์ OCR หลายระบบสามารถจดจำภาษาหลายภาษา อย่างไรก็ตาม สำคัญที่จะต้องดูว่าภาษาที่ต้องการได้รับการสนับสนุนโดยซอฟต์แวร์ที่คุณใช้
OCR ย่อมาจาก Optical Character Recognition และใช้ในการจดจำข้อความที่พิมพ์ขณะที่ ICR หรือ Intelligent Character Recognition ที่ทันสมัยยิ่งขึ้นและใช้สำหรับการจดจำข้อความที่เขียนด้วยมือ
OCR ทำงานได้ดีที่สุดกับแบบอักษรที่ชัดเจน, สามารถอ่านได้ง่ายและมีขนาดข้อความมาตรฐาน ในขณะที่มันสามารถทำงานได้กับแบบอักษรและขนาดที่หลากหลาย แต่ความถูกต้องมักจะลดลงเมื่อจัดการกับแบบอักษรที่ไม่ปกติหรือขนาดข้อความที่เล็กมาก
OCR อาจพบปัญหากับเอกสารที่มีความละเอียดต่ำ, แบบอักษรซับซ้อน, ข้อความที่พิมพ์ไม่ดี, ลายมือ และเอกสารที่มีพื้นหลังที่แทรกซ้อนกับข้อความ นอกจากนี้ อย่างไรก็ตาม อาจใช้งานกับภาษาหลายภาษาได้ มันอาจไม่ครอบคลุมทุกภาษาอย่างสมบูรณ์
ใช่ OCR สามารถสแกนข้อความที่มีสีและพื้นหลังที่มีสี แม้ว่าจะมีประสิทธิภาพมากขึ้นด้วยสีที่มีความเปรียบเทียบความตัดกัน เช่น ข้อความดำบนพื้นหลังสีขาว ความถูกต้องอาจลดลงเมื่อสีข้อความและสีพื้นหลังไม่มีความคมชัดเพียงพอ
รูปแบบภาพ J2C หรือที่รู้จักในชื่อ JPEG 2000 Code Stream เป็นส่วนหนึ่งของชุดมาตรฐาน JPEG 2000 JPEG 2000 เองเป็นมาตรฐานการบีบอัดภาพและระบบการเข้ารหัสที่สร้างโดยคณะกรรมการ Joint Photographic Experts Group โดยมีจุดประสงค์เพื่อแทนที่มาตรฐาน JPEG เดิม มาตรฐาน JPEG 2000 ได้รับการกำหนดขึ้นโดยมีเป้าหมายเพื่อจัดหาระบบการเข้ารหัสภาพใหม่ที่มีความยืดหยุ่นสูงและประสิทธิภาพการทำงานที่ดีกว่า JPEG โดยออกแบบมาเพื่อแก้ไขข้อจำกัดบางประการของรูปแบบ JPEG เช่น ประสิทธิภาพที่ไม่ดีในอัตราบิตต่ำและการขาดการปรับขนาด
JPEG 2000 ใช้การแปลงเวฟเล็ตแทนการแปลงโคไซน์แบบไม่ต่อเนื่อง (DCT) ที่ใช้ในมาตรฐาน JPEG เดิม การแปลงเวฟเล็ตช่วยให้ปรับขนาดได้ในระดับสูงขึ้นและสามารถทำการบีบอัดแบบไม่สูญเสียข้อมูล ซึ่งหมายความว่าสามารถสร้างภาพต้นฉบับขึ้นใหม่ได้อย่างสมบูรณ์แบบจากข้อมูลที่บีบอัดแล้ว นี่เป็นข้อได้เปรียบที่สำคัญเหนือการบีบอัดแบบสูญเสียข้อมูลของ JPEG เดิม ซึ่งจะสูญเสียข้อมูลภาพบางส่วนอย่างถาวรในระหว่างกระบวนการบีบอัด
รูปแบบไฟล์ J2C หมายถึงสตรีมโค้ดของ JPEG 2000 โดยเฉพาะ สตรีมโค้ดนี้เป็นข้อมูลภาพที่เข้ารหัสจริง ซึ่งสามารถฝังอยู่ในรูปแบบคอนเทนเนอร์ต่างๆ เช่น JP2 (รูปแบบไฟล์ JPEG 2000 ส่วนที่ 1), JPX (JPEG 2000 ส่วนที่ 2, รูปแบบไฟล์ที่ขยาย) และ MJ2 (รูปแบบไฟล์ Motion JPEG 2000 สำหรับวิดีโอ) รูปแบบ J2C เป็นข้อมูลภาพที่เข้ารหัสแบบดิบโดยพื้นฐานแล้ว โดยไม่มีเมตาเดตาหรือโครงสร้างเพิ่มเติมใดๆ ที่อาจมีให้โดยรูปแบบคอนเทนเนอร์
หนึ่งในคุณสมบัติหลักของรูปแบบ J2C คือการรองรับการบีบอัดทั้งแบบไม่สูญเสียข้อมูลและแบบสูญเสียข้อมูลในไฟล์เดียวกัน ซึ่งทำได้โดยใช้การแปลงเวฟเล็ตแบบกลับได้สำหรับการบีบอัดแบบไม่สูญเสียข้อมูลและการแปลงเวฟเล็ตแบบไม่กลับได้สำหรับการบีบอัดแบบสูญเสียข้อมูล ตัวเลือกการบีบอัดแบบไม่สูญเสี ยข้อมูลหรือแบบสูญเสียข้อมูลสามารถทำได้แบบรายไทล์ภายในภาพ ซึ่งช่วยให้สามารถผสมผสานพื้นที่ที่มีคุณภาพสูงและคุณภาพต่ำลงได้โดยขึ้นอยู่กับความสำคัญของเนื้อหา
รูปแบบ J2C ยังปรับขนาดได้สูงมาก โดยรองรับคุณสมบัติที่เรียกว่า 'การถอดรหัสแบบก้าวหน้า' ซึ่งหมายความว่าสามารถถอดรหัสและแสดงภาพเวอร์ชันความละเอียดต่ำก่อน จากนั้นจึงตามด้วยเลเยอร์ความละเอียดที่สูงขึ้นตามลำดับเมื่อได้รับหรือประมวลผลข้อมูลภาพเพิ่มเติม สิ่งนี้มีประโยชน์อย่างยิ่งสำหรับแอปพลิเคชันเครือข่ายที่มีแบนด์วิดท์จำกัด เนื่องจากช่วยให้สามารถดูตัวอย่างภาพได้อย่างรวดเร็วในขณะที่ยังคงดาวน์โหลดภาพความละเอียดสูงแบบเต็มอยู่
อีกแง่มุมที่สำคัญของรูปแบบ J2C คือการรองรับพื้นที่ที่น่าสนใจ (ROI) ด้วยการเข้ารหัส ROI บางส่วนของภาพสามารถเข้ารหัสด้วยคุณภาพ ที่สูงกว่าส่วนอื่นๆ ของภาพได้ สิ่งนี้มีประโยชน์เมื่อบางพื้นที่ของภาพมีความสำคัญมากกว่าและจำเป็นต้องรักษาไว้ด้วยความเที่ยงตรงที่สูงกว่า เช่น ใบหน้าในภาพบุคคลหรือข้อความในเอกสาร
รูปแบบ J2C ยังมีคุณสมบัติการทนต่อข้อผิดพลาดที่ซับซ้อน ซึ่งทำให้ทนทานต่อการสูญเสียข้อมูลระหว่างการส่งข้อมูลมากขึ้น ซึ่งทำได้โดยใช้รหัสแก้ไขข้อผิดพลาดและการจัดโครงสร้างสตรีมโค้ดในลักษณะที่ช่วยให้สามารถกู้คืนแพ็กเก็ตที่สูญหายได้ สิ่งนี้ทำให้ J2C เป็นตัวเลือกที่ดีสำหรับการส่งภาพผ่านเครือข่ายที่ไม่น่าเชื่อถือหรือการจัดเก็บภาพในลักษณะที่ลดผลกระทบของการเสียหายของข้อมูลที่อาจเกิดขึ้น
การจัดการพื้นที่สีใน J2C ยังล้ำหน้ากว่าใน JPEG เดิม รูปแบบนี้รองรับพื้นที่สีที่หลากหลาย รวมถึงเฉดสีเทา, RGB, YCbCr และอื่นๆ นอกจากนี้ยังอนุญาตให้ใช้พื้นที ่สีที่แตกต่างกันภายในไทล์ต่างๆ ของภาพเดียวกัน ซึ่งให้ความยืดหยุ่นเพิ่มเติมในการเข้ารหัสและแสดงภาพ
ประสิทธิภาพการบีบอัดของรูปแบบ J2C เป็นอีกหนึ่งจุดแข็ง โดยการใช้การแปลงเวฟเล็ตและเทคนิคการเข้ารหัสเอนโทรปีขั้นสูง เช่น การเข้ารหัสเลขคณิต J2C สามารถบรรลุอัตราการบีบอัดที่สูงกว่า JPEG เดิมได้ โดยเฉพาะที่อัตราบิตต่ำกว่า สิ่งนี้ทำให้เป็นตัวเลือกที่น่าสนใจสำหรับแอปพลิเคชันที่พื้นที่จัดเก็บหรือแบนด์วิดท์มีค่าพรีเมียม เช่น ในอุปกรณ์เคลื่อนที่หรือแอปพลิเคชันเว็บ
แม้จะมีข้อดีมากมาย แต่รูปแบบ J2C ก็ยังไม่ได้รับการยอมรับอย่างแพร่หลายเมื่อเทียบกับรูปแบบ JPEG เดิม สาเหตุหนึ่งมาจากความซับซ้อนที่มากขึ้นของมาตรฐาน JPEG 2000 ซึ่งต้องใช้ทรัพยากรการคำนวณมากกว่าในการเข้ารหัสและถอดรหัสภาพ นอกจากนี้ รูปแบบ JPEG เดิมยังฝังรากลึกในระบบต่างๆ มากมายและมีระบบนิเวศของซอฟต์แวร์และฮาร์ดแวร์ที่กว้างขวาง ซึ่งทำให้มาตรฐานใหม่ยากที่จะได้รับการยอมรับ
อย่างไรก็ตาม ในสาขาเฉพาะบางสาขา รูปแบบ J2C ได้กลายเป็นตัวเลือกที่ต้องการเนื่องจากคุณสมบัติเฉพาะตัวอย่าง ในการถ่ายภาพทางการแพทย์ ตัวอย่างเช่น ความสามารถในการบีบอัดแบบไม่สูญเสียข้อมูลและการรองรับภาพช่วงไดนามิกสูงและภาพความลึกของบิตสูงทำให้ J2C เป็นรูปแบบที่เหมาะ ในทำนองเดียวกัน ในโรงภาพยนตร์ดิจิทัลและการจัดเก็บวิดีโอ คุณภาพสูงในอัตราการบีบอัดสูงและคุณสมบัติการปรับขนาดของรูปแบบนี้มีค่าอย่างมาก
กระบวนการเข้ารหัสของภาพ J2C เกี่ยวข้องกับหลายขั้นตอน ขั้นแรก ภาพจะถูกแบ่งออกเป็นไทล์ ซึ่งสามารถประมวลผลได้อย่างอิสระ การแบ่งไทล์นี้ช่วยให้สามารถประมวลผลแบบขนานและสามารถปรับปรุงประสิทธิภาพของกระบวนการ เข้ารหัสและถอดรหัสได้ จากนั้นแต่ละไทล์จะถูกแปลงโดยใช้การแปลงเวฟเล็ตแบบกลับได้หรือแบบไม่กลับได้ โดยขึ้นอยู่กับว่าต้องการการบีบอัดแบบไม่สูญเสียข้อมูลหรือแบบสูญเสียข้อมูล
หลังจากการแปลงเวฟเล็ตแล้ว ค่าสัมประสิทธิ์จะถูกทำให้เป็นปริมาณ ซึ่งเกี่ยวข้องกับการลดความแม่นยำของค่าสัมประสิทธิ์เวฟเล็ต ในการบีบอัดแบบไม่สูญเสียข้อมูล ขั้นตอนนี้จะถูกข้าม เนื่องจากการทำให้เป็นปริมาณจะทำให้เกิดข้อผิดพลาด ค่าสัมประสิทธิ์ที่ทำให้เป็นปริมาณจะถูกเข้ารหัสเอนโทรปีโดยใช้การเข้ารหัสเลขคณิต ซึ่งจะลดขนาดของข้อมูลโดยใช้ประโยชน์จากคุณสมบัติทางสถิติของเนื้อหาภาพ
ขั้นตอนสุดท้ายในกระบวนการเข้ารหัสคือการประกอบสตรีมโค้ด ข้อมูลที่เข้ารหัสเอนโทรปีสำหรับแต่ละไทล์จะรวมกับข้อมูลส่วนหัวที่อธิบายภาพและวิธีการเข้ารหัส ซึ่ง รวมถึงข้อมูลเกี่ยวกับขนาดของภาพ จำนวนไทล์ การแปลงเวฟเล็ตที่ใช้ พารามิเตอร์การทำให้เป็นปริมาณ และข้อมูลอื่นๆ ที่เกี่ยวข้อง สตรีมโค้ดที่ได้สามารถจัดเก็บในไฟล์ J2C หรือฝังอยู่ในรูปแบบคอนเทนเนอร์
การถอดรหัสภาพ J2C นั้นเกี่ยวข้องกับการย้อนกลับกระบวนการเข้ารหัสโดยพื้นฐานแล้ว สตรีมโค้ดจะถูกวิเคราะห์เพื่อแยกข้อมูลส่วนหัวและข้อมูลที่เข้ารหัสเอนโทรปีสำหรับแต่ละไทล์ จากนั้นข้อมูลที่เข้ารหัสเอนโทรปีจะถูกถอดรหัสเพื่อกู้คืนค่าสัมประสิทธิ์เวฟเล็ตที่ทำให้เป็นปริมาณ หากภาพถูกบี
ตัวแปลงนี้ทำงานทั้งหมดในเบราว์เซอร์ของคุณ เมื่อคุณเลือก ไฟล์ มันจะถูกอ่านเข้าสู่หน่วยความจำและแปลงเป็นรูปแบบที่เลือก คุณสามารถดาวน์โหลดไฟล์ที่แปลงแล้วได้.
การแปลงเริ่มทันที และไฟล์ส่วนใหญ่ถูกแปลงใน ภายใต้วินาที ไฟล์ขนาดใหญ่อาจใช้เวลานานขึ้น.
ไฟล์ของคุณไม่เคยถูกอัปโหลดไปยังเซิร์ฟเวอร์ของเรา พวกเขา ถูกแปลงในเบราว์เซอร์ของคุณ และไฟล์ที่แปลงแล้วจากนั้น ดาวน์โหลด เราไม่เคยเห็นไฟล์ของคุณ.
เราสนับสนุนการแปลงระหว่างทุกรูปแบบภาพ รวมถึง JPEG, PNG, GIF, WebP, SVG, BMP, TIFF, และอื่น ๆ อีกมากมาย.
ตัวแปลงนี้เป็นฟรีและจะเป็นฟรีตลอดไป เนื่องจากมันทำงานในเบราว์เซอร์ของคุณ เราไม่ต้องจ่ายเงินสำหรับ เซิร์ฟเวอร์ ดังนั้นเราไม่จำเป็นต้องเรียกเก็บค่าใช้จ่ายจากคุณ.
ใช่! คุณสามารถแปลงไฟล์เท่าที่คุณต้องการในครั้งเดียว แค่ เลือกไฟล์หลายไฟล์เมื่อคุณเพิ่มพวกเขา.