Usuwanie tła oddziela obiekt od otoczenia, dzięki czemu można go umieścić na przezroczystości, zamienić scenę lub wkomponować w nowy projekt. Pod maską szacujesz maskę alfa — nieprzezroczystość na piksel od 0 do 1 — a następnie komponujesz pierwszy plan z użyciem kanału alfa na czymś innym. To jest matematyka z Porter–Duff i przyczyna typowych pułapek, takich jak „frędzle” i alfa prosta a premultiplikowana. Praktyczne wskazówki dotyczące premultiplikacji i koloru liniowego można znaleźć w notatkach Win2D firmy Microsoft, Sørena Sandmanna i opracowaniu Lomonta na temat mieszania liniowego.
Jeśli możesz kontrolować przechwytywanie, pomaluj tło na jednolity kolor (często zielony) i wyklucz ten odcień. Jest to szybkie, sprawdzone w filmie i telewizji oraz idealne do wideo. Kompromisy to oświetlenie i garderoba: kolorowe światło rozlewa się na krawędzie (zwłaszcza włosy), więc użyjesz narzędzi do usuwania rozlania, aby zneutralizować zanieczyszczenie. Dobre wprowadzenia obejmują dokumentację Nuke, Mixing Light i praktyczne demo Fusion.
W przypadku pojedynczych obrazów z nieuporządkowanym tłem, algorytmy interaktywne potrzebują kilku wskazówek od użytkownika — np. luźnego prostokąta lub gryzmołów — i tworzą ostrą maskę. Kanoniczną metodą jest GrabCut (rozdział książki), który uczy się modeli kolorów dla pierwszego planu/tła i iteracyjnie wykorzystuje cięcia grafowe do ich rozdzielenia. Podobne pomysły zobaczysz w Zaznaczaniu pierwszego planu w GIMP opartym na SIOX (wtyczka ImageJ).
Matowanie rozwiązuje problem częściowej przezroczystości na delikatnych granicach (włosy, futro, dym, szkło). Klasyczne matowanie w formie zamkniętej przyjmuje trimapę (zdecydowanie-pierwszy plan/zdecydowanie-tło/nieznane) i rozwiązuje układ liniowy dla alfy z dużą dokładnością krawędzi. Nowoczesne głębokie matowanie obrazu uczy sieci neuronowe na zbiorze danych Adobe Composition-1K (dokumentacja MMEditing) i jest oceniane za pomocą metryk takich jak SAD, MSE, Gradient i Connectivity (wyjaśnienie benchmarku).
Powiązane prace nad segmentacją są również przydatne: DeepLabv3+ udoskonala granice za pomocą kodera-dekodera i splotów atrous (PDF); Mask R-CNN generuje maski dla poszczególnych instancji (PDF); a SAM (Segment Anything) to sterowany promptami model podstawowy, który generuje maski w trybie zero-shot na nieznanych obrazach.
Prace akademickie raportują błędy SAD, MSE, Gradient i Connectivity na Composition-1K. Jeśli wybierasz model, szukaj tych metryk (definicje metryk; sekcja metryk Background Matting). W przypadku portretów/wideo MODNet i Background Matting V2 są skuteczne; w przypadku ogólnych obrazów „obiektów wyróżniających się”, U2-Net jest solidną podstawą; w przypadku trudnej przezroczystości FBA daje lepsze rezultaty.
Format Portable Pixmap (PPM) to najprostszy, a zarazem potężny format grafiki rastrowej, który pojawił się jako część projektu Netpbm. Format PPM, z założenia prosty w swojej konstrukcji, zapewnia sposób na reprezentowanie obrazów kolorowych w sposób podstawowy, co sprawia, że jest niezwykle dostępny do odczytu i zapisu zarówno dla ludzi, jak i maszyn. Jest on klasyfikowany pod parasolem formatów Netpbm, wraz z Portable Bit Map (PBM) dla obrazów czarno-białych i Portable Gray Map (PGM) dla obrazów w skali szarości. Każdy z tych formatów jest zaprojektowany tak, aby zawierać obrazy o różnym stopniu głębi kolorów i złożoności, przy czym PPM jest najbardziej zaawansowany spośród nich pod względem reprezentacji kolorów.
Format PPM definiuje obraz w postaci prostego pliku tekstowego ASCII (chociaż powszechna jest również reprezentacja binarna), który określa informacje o kolorze pikseli w prosty sposób. Zaczyna się od „liczby magicznej”, która wskazuje, czy plik jest w formacie ASCII (P3) czy binarnym (P6), a następnie następuje spacja, wymiary obrazu (szerokość i wysokość), maksymalna wartość koloru, a następnie rzeczywiste dane pikseli. Dane pikseli w pliku PPM składają się z wartości kolorów RGB, przy czym każdy składnik mieści się w zakresie od 0 do określonej wartości maksymalnej, zwykle 255, co pozwala na ponad 16 milionów możliwych kombinacji kolorów na piksel.
Jedną z głównych zalet formatu PPM jest jego prostota. Struktura pliku PPM jest tak prosta, że można go łatwo wygenerować lub zmodyfikować za pomocą podstawowych narzędzi do edycji tekstu w trybie ASCII. Ta prostota rozciąga się również na jego przetwarzanie; pisanie oprogramowania do parsowania lub generowania obrazów PPM wymaga minimalnego wysiłku w porównaniu do bardziej złożonych formatów, takich jak JPEG czy PNG. Ta dostępność sprawiła, że PPM stał się ulubionym wyborem do podstawowych zadań związanych z obrazowaniem w środowiskach akademickich lub wśród hobbystów, a także jako krok milowy dla osób uczących się przetwarzania obrazu lub programowania grafiki komputerowej.
Pomimo swoich zalet, format PPM ma również zauważalne ograniczenia wynikające z jego prostoty. Najważniejszym z nich jest brak jakiegokolwiek mechanizmu kompresji, co skutkuje plikami, które są znacznie większe niż ich odpowiedniki w bardziej zaawansowanych formatach, takich jak JPEG czy PNG. To sprawia, że PPM jest mniej odpowiedni do użytku w Internecie lub w dowolnej aplikacji, w której przestrzeń dyskowa i przepustowość są problemem. Ponadto format PPM nie obsługuje żadnej formy przezroczystości, warstw ani metadanych (takich jak profile kolorów lub dane EXIF), co może ograniczać jego użyteczność w bardziej złożonych przepływach pracy związanych z projektowaniem graficznym lub fotografią.
Aby utworzyć lub wyświetlić plik PPM, można użyć różnych narzędzi dostępnych w pakiecie Netpbm lub za pośrednictwem wielu innych narzędzi graficznych, które obsługują ten format. Programiści oprogramowania i badacze doceniają format PPM za łatwość implementacji. Parsowanie plików PPM, szczególnie w trybie ASCII, jest proste, ponieważ polega na odczytywaniu wierszy tekstu i interpretowaniu ich zgodnie z minimalnymi specyfikacjami formatu. Pisanie oprogramowania, które wyprowadza obrazy PPM, może być równie proste, co czyni je doskonałym wyborem do początkowych projektów na kursach programowania grafiki lub do szybkiego prototypowania.
W praktyce praca z plikami PPM polega na dogłębnym zrozumieniu ich struktury. Plik zaczyna się od liczby magicznej („P3” dla ASCII lub „P6” dla binarnego), po której następują znaki spacji. Po liczbie magicznej wymiary obrazu są podawane jako dwie liczby całkowite reprezentujące odpowiednio szerokość i wysokość obrazu. Są one również oddzielone spacją. Po wymiarach określona jest maksymalna wartość koloru, która dyktuje zakres wartości RGB, jakie każdy z nich może mieć. W większości przypadków wartość ta wynosi 255, co oznacza, że każdy składnik koloru (czerwony, zielony i niebieski) może mieścić się w zakresie od 0 do 255.
Po nagłówku następują wartości RGB dla każdego piksela. W trybie ASCII (P3) wartości te są zapisywane w postaci zwykłego tekstu jako oddzielne liczby, przy czym każda trójka RGB reprezentuje jeden piksel. Piksele są rozmieszczone w wierszach od lewej do prawej i od góry do dołu. W trybie binarnym (P6) wartości kolorów są reprezentowane w bardziej zwartym formacie binarnym, który, chociaż mniej czytelny dla człowieka, może być bardziej wydajnie parsowany przez komputery. Każdy składnik trójki RGB jest zwykle pojedynczym bajtem, co prowadzi do bardziej usprawnionego pliku, który pomimo braku kompresji jest szybszy do odczytu i zapisu w porównaniu do jego odpowiednika ASCII.
Pomimo przejścia na bardziej zaawansowane i złożone formaty obrazów, które oferują kompresję i dodatkowe funkcje, format PPM zachowuje swoją istotność w różnych niszowych kontekstach. Nie można przecenić jego zdolności do służenia jako wspólny mianownik w badaniach nad przetwarzaniem obrazu, gdzie nacisk kładziony jest bardziej na algorytmy niż na szczegóły formatów plików. Ponadto prostota formatu i brak kompresji sprawiają, że jest to idealny wybór w scenariuszach, w których wierność manipulacji obrazem jest najważniejsza, ponieważ nie ma utraty jakości obrazu spowodowanej artefaktami kompresji.
Rozwiązując problem rozmiaru pliku, który jest znaczącą wadą formatu PPM, można rozważyć zewnętrzne narzędzia kompresji jako obejście. Chociaż nie integruje to kompresji w samym formacie pliku, narzędzia takie jak gzip mogą znacznie zmniejszyć przestrzeń dyskową wymaganą dla plików PPM, dzięki czemu są łatwiejsze w zarządzaniu do celów przesyłania lub archiwizacji. To podejście dodaje jednak dodatkowy krok w przepływie pracy, ponieważ pliki muszą być kompresowane i dekompresowane oddzielnie od procesu przeglądania lub edycji obrazów.
Zaawansowane techniki obrazowania i dążenie do większej wydajności doprowadziły do rozwoju i preferencji dla formatów takich jak JPEG i PNG w wielu zastosowaniach. Jednak nie można przeoczyć wartości edukacyjnej formatu PPM w nauczaniu podstaw cyfrowego obrazowania i programowania. Ograniczając złożoność do podstawowych składników pliku obrazu, uczniowie mogą skupić się na algorytmach, które wpływają na transformację, ulepszanie i generowanie obrazu, nie pogrążając się w zawiłościach algorytmów parsowania formatu i kompresji.
Ponadto format PPM służy jako pomost do bardziej złożonych zadań i formatów obrazowania. Zrozumienie i praca z modelem kolorów RGB na poziomie surowych pikseli zapewnia podstawową wiedzę, która ma zastosowanie praktycznie we wszystkich obszarach grafiki komputerowej i przetwarzania obrazu. Doświadczenie zdobyte podczas manipulowania obrazami w formacie PPM stanowi podstawę do radzenia sobie z bardziej zaawansowanymi formatami i wyzwaniami, jakie one stwarzają, takimi jak radzenie sobie z przestrzeniami kolorów, technikami kompresji i metadanymi obrazu.
Podsumowując, format Portable Pixmap (PPM), dzięki swojej prostocie i łatwości użytkowania, wyróżnia się jako cenne narzędzie edukacyjne w dziedzinie grafiki komputerowej i przetwarzania obrazu. Chociaż może nie posiadać funkcji i wydajności bardziej nowoczesnych formatów, jego prostota oferuje niezrównaną okazję dla początkujących do głębokiego poznania podstaw reprezentacji i manipulacji obrazem. Dla badaczy, edukatorów i hobbystów format PPM zapewnia jasne i dostępne ramy do eksploracji podstaw cyfrowego obrazowania, służąc zarówno jako praktyczne narzędzie, jak i zasób edukacyjny.
Ten konwerter działa całkowicie w Twojej przeglądarce. Kiedy wybierasz plik, jest on wczytywany do pamięci i konwertowany na wybrany format. Następnie możesz pobrać skonwertowany plik.
Konwersje zaczynają się natychmiast, a większość plików jest konwertowana w mniej niż sekundę. Większe pliki mogą wymagać więcej czasu.
Twoje pliki nigdy nie są przesyłane na nasze serwery. Są konwertowane w Twojej przeglądarce, a następnie pobierany jest skonwertowany plik. Nigdy nie widzimy Twoich plików.
Obsługujemy konwersję między wszystkimi formatami obrazów, w tym JPEG, PNG, GIF, WebP, SVG, BMP, TIFF i więcej.
Ten konwerter jest całkowicie darmowy i zawsze będzie darmowy. Ponieważ działa w Twojej przeglądarce, nie musimy płacić za serwery, więc nie musimy Cię obciążać opłatami.
Tak! Możesz konwertować tyle plików, ile chcesz na raz. Wystarczy wybrać wiele plików podczas ich dodawania.