Usuwanie tła oddziela obiekt od otoczenia, dzięki czemu można go umieścić na przezroczystości, zamienić scenę lub wkomponować w nowy projekt. Pod maską szacujesz maskę alfa — nieprzezroczystość na piksel od 0 do 1 — a następnie komponujesz pierwszy plan z użyciem kanału alfa na czymś innym. To jest matematyka z Porter–Duff i przyczyna typowych pułapek, takich jak „frędzle” i alfa prosta a premultiplikowana. Praktyczne wskazówki dotyczące premultiplikacji i koloru liniowego można znaleźć w notatkach Win2D firmy Microsoft, Sørena Sandmanna i opracowaniu Lomonta na temat mieszania liniowego.
Jeśli możesz kontrolować przechwytywanie, pomaluj tło na jednolity kolor (często zielony) i wyklucz ten odcień. Jest to szybkie, sprawdzone w filmie i telewizji oraz idealne do wideo. Kompromisy to oświetlenie i garderoba: kolorowe światło rozlewa się na krawędzie (zwłaszcza włosy), więc użyjesz narzędzi do usuwania rozlania, aby zneutralizować zanieczyszczenie. Dobre wprowadzenia obejmują dokumentację Nuke, Mixing Light i praktyczne demo Fusion.
W przypadku pojedynczych obrazów z nieuporządkowanym tłem, algorytmy interaktywne potrzebują kilku wskazówek od użytkownika — np. luźnego prostokąta lub gryzmołów — i tworzą ostrą maskę. Kanoniczną metodą jest GrabCut (rozdział książki), który uczy się modeli kolorów dla pierwszego planu/tła i iteracyjnie wykorzystuje cięcia grafowe do ich rozdzielenia. Podobne pomysły zobaczysz w Zaznaczaniu pierwszego planu w GIMP opartym na SIOX (wtyczka ImageJ).
Matowanie rozwiązuje problem częściowej przezroczystości na delikatnych granicach (włosy, futro, dym, szkło). Klasyczne matowanie w formie zamkniętej przyjmuje trimapę (zdecydowanie-pierwszy plan/zdecydowanie-tło/nieznane) i rozwiązuje układ liniowy dla alfy z dużą dokładnością krawędzi. Nowoczesne głębokie matowanie obrazu uczy sieci neuronowe na zbiorze danych Adobe Composition-1K (dokumentacja MMEditing) i jest oceniane za pomocą metryk takich jak SAD, MSE, Gradient i Connectivity (wyjaśnienie benchmarku).
Powiązane prace nad segmentacją są również przydatne: DeepLabv3+ udoskonala granice za pomocą kodera-dekodera i splotów atrous (PDF); Mask R-CNN generuje maski dla poszczególnych instancji (PDF); a SAM (Segment Anything) to sterowany promptami model podstawowy, który generuje maski w trybie zero-shot na nieznanych obrazach.
Prace akademickie raportują błędy SAD, MSE, Gradient i Connectivity na Composition-1K. Jeśli wybierasz model, szukaj tych metryk (definicje metryk; sekcja metryk Background Matting). W przypadku portretów/wideo MODNet i Background Matting V2 są skuteczne; w przypadku ogólnych obrazów „obiektów wyróżniających się”, U2-Net jest solidną podstawą; w przypadku trudnej przezroczystości FBA daje lepsze rezultaty.
Format obrazu PDB (Protein Data Bank) nie jest tradycyjnym formatem „obrazu”, takim jak JPEG czy PNG, lecz raczej formatem danych, który przechowuje trójwymiarowe informacje strukturalne o białkach, kwasach nukleinowych i złożonych zespołach. Format PDB jest kamieniem węgielnym bioinformatyki i biologii strukturalnej, ponieważ pozwala naukowcom wizualizować, udostępniać i analizować struktury molekularne biologicznych makromolekuł. Archiwum PDB jest zarządzane przez Worldwide Protein Data Bank (wwPDB), który zapewnia, że dane PDB są bezpłatnie i publicznie dostępne dla globalnej społeczności.
Format PDB został opracowany po raz pierwszy na początku lat 70. XX wieku, aby zaspokoić rosnące zapotrzebowanie na znormalizowaną metodę przedstawiania struktur molekularnych. Od tego czasu ewoluował, aby pomieścić szeroki zakres danych molekularnych. Format jest oparty na tekście i może być odczytywany przez ludzi, a także przetwarzany przez komputery. Składa się z serii rekordów, z których każdy zaczyna się od sześcioznakowego identyfikatora wiersza, który określa typ informacji zawartych w tym rekordzie. Rekordy zawierają szczegółowy opis struktury, w tym współrzędne atomowe, łączność i dane eksperymentalne.
Typowy plik PDB zaczyna się od sekcji nagłówka, która zawiera metadane dotyczące struktury białka lub kwasu nukleinowego. Ta sekcja zawiera rekordy takie jak TITLE, który zawiera krótki opis struktury; COMPND, który wymienia składniki chemiczne; i SOURCE, który opisuje pochodzenie cząsteczki biologicznej. Nagłówek zawiera również rekord AUTHOR, który zawiera nazwiska osób, które określiły strukturę, oraz rekord JOURNAL, który zawiera cytowanie literatury, w której struktura została opisana po raz pierwszy.
Po nagłówku plik PDB zawiera podstawowe informacje o sekwencji makromolekuły w rekordach SEQRES. Rekordy te zawierają sekwencję reszt (aminokwasy dla białek, nukleotydy dla kwasów nukleinowych) w takiej postaci, w jakiej występują w łańcuchu. Informacje te są kluczowe dla zrozumienia związku między sekwencją cząsteczki a jej trójwymiarową strukturą.
Rekordy ATOM są prawdopodobnie najważniejszą częścią pliku PDB, ponieważ zawierają współrzędne każdego atomu w cząsteczce. Każdy rekord ATOM zawiera numer seryjny atomu, nazwę atomu, nazwę reszty, identyfikator łańcucha, numer sekwencji reszty oraz współrzędne kartezjańskie x, y i z atomu w angstremach. Rekordy ATOM umożliwiają rekonstrukcję trójwymiarowej struktury cząsteczki, którą można wizualizować za pomocą specjalistycznego oprogramowania, takiego jak PyMOL, Chimera lub VMD.
Oprócz rekordów ATOM istnieją rekordy HETATM dla atomów, które są częścią niestandardowych reszt lub ligandów, takich jak jony metali, cząsteczki wody lub inne małe cząsteczki związane z białkiem lub kwasem nukleinowym. Rekordy te są sformatowane podobnie do rekordów ATOM, ale są wyróżnione, aby ułatwić identyfikację niemakromolekularnych składników w strukturze.
Informacje o łączności są zawarte w rekordach CONECT, które zawierają wiązania między atomami. Rekordy te nie są obowiązkowe, ponieważ większość oprogramowania do wizualizacji i analizy molekularnej może wnioskować o łączności na podstawie odległości między atomami. Są one jednak kluczowe dla definiowania nietypowych wiązań lub dla struktur z kompleksami koordynacyjnymi metali, w których wiązanie może nie być oczywiste z samych współrzędnych atomowych.
Format PDB zawiera również rekordy określające elementy struktury drugorzędowej, takie jak helisy alfa i arkusze beta. Rekordy HELIX i SHEET identyfikują te struktury i dostarczają informacji o ich położeniu w sekwencji. Informacje te pomagają w zrozumieniu wzorców fałdowania makromolekuły i są niezbędne do badań porównawczych i modelowania.
Dane eksperymentalne i metody użyte do określenia struktury są również udokumentowane w pliku PDB. Rekordy takie jak EXPDTA opisują technikę eksperymentalną (np. krystalografię rentgenowską, spektroskopię NMR), podczas gdy rekordy REMARK mogą zawierać szeroką gamę komentarzy i adnotacji dotyczących struktury, w tym szczegóły dotyczące zbierania danych, rozdzielczości i statystyk udoskonalenia.
Rekord END oznacza koniec pliku PDB. Ważne jest, aby zauważyć, że chociaż format PDB jest szeroko stosowany, ma pewne ograniczenia ze względu na swój wiek i stałą szerokość kolumny, co może prowadzić do problemów z nowoczesnymi strukturami, które mają dużą liczbę atomów lub wymagają większej precyzji. Aby rozwiązać te ograniczenia, opracowano zaktualizowany format o nazwie mmCIF (plik informacji krystalograficznych makromolekularnych), który oferuje bardziej elastyczną i rozszerzalną strukturę do reprezentowania struktur makromolekularnych.
Pomimo rozwoju formatu mmCIF, format PDB pozostaje popularny ze względu na swoją prostotę i dużą liczbę narzędzi programowych, które go obsługują. Badacze często konwertują między formatami PDB i mmCIF w zależności od swoich potrzeb i narzędzi, których używają. Długowieczność formatu PDB świadczy o jego fundamentalnej roli w dziedzinie biologii strukturalnej i jego skuteczności w przekazywaniu złożonych informacji strukturalnych w stosunkowo prosty sposób.
Aby pracować z plikami PDB, naukowcy używają różnych narzędzi obliczeniowych. Oprogramowanie do wizualizacji molekularnej pozwala użytkownikom ładować pliki PDB i oglądać struktury w trzech wymiarach, obracać je, powiększać i pomniejszać oraz stosować różne style renderowania, aby lepiej zrozumieć przestrzenny układ atomów. Narzędzia te często zapewniają dodatkowe funkcje, takie jak pomiar odległości, kątów i dihedrów, symulowanie dynamiki molekularnej oraz analizowanie interakcji w strukturze lub z potencjalnymi ligandami.
Format PDB odgrywa również kluczową rolę w biologii obliczeniowej i odkrywaniu leków. Informacje strukturalne z plików PDB są wykorzystywane w modelowaniu homologicznym, w którym znana struktura pokrewnego białka jest używana do przewidywania struktury białka będącego przedmiotem zainteresowania. W projektowaniu leków opartym na strukturze pliki PDB białek docelowych są używane do przesiewania i optymalizacji potencjalnych związków leków, które następnie można syntetyzować i testować w laboratorium.
Wpływ formatu PDB wykracza poza indywidualne projekty badawcze. Sam Protein Data Bank jest repozytorium, które obecnie zawiera ponad 150 000 struktur i stale rośnie w miarę określania i deponowania nowych struktur. Ta baza danych jest nieocenionym źródłem do edukacji, pozwalając studentom eksplorować i poznawać struktury biologicznych makromolekuł. Służy również jako historyczny zapis postępu w biologii strukturalnej w ciągu ostatnich dziesięcioleci.
Podsumowując, format obrazu PDB jest kluczowym narzędziem w dziedzinie biologii strukturalnej, zapewniającym sposób przechowywania, udostępniania i analizowania trójwymiarowych struktur biologicznych makromolekuł. Chociaż ma pewne ograniczenia, jego szerokie przyjęcie i rozwój bogatego ekosystemu narzędzi do jego użytku zapewniają, że pozostanie kluczowym formatem w przewidywalnej przyszłości. W miarę rozwoju dziedziny biologii strukturalnej format PDB prawdopodobnie zostanie uzupełniony o bardziej zaawansowane formaty, takie jak mmCIF, ale jego spuścizna przetrwa jako fundament, na którym zbudowana jest współczesna biologia strukturalna.
Ten konwerter działa w całości w Twojej przeglądarce. Po wybraniu pliku jest on wczytywany do pamięci i konwertowany do wybranego formatu. Następnie możesz pobrać przekonwertowany plik.
Konwersje rozpoczynają się natychmiast, a większość plików jest konwertowana w mniej niż sekundę. Większe pliki mogą zająć więcej czasu.
Twoje pliki nigdy nie są przesyłane na nasze serwery. Są one konwertowane w Twojej przeglądarce, a następnie pobierany jest przekonwertowany plik. Nigdy nie widzimy Twoich plików.
Obsługujemy konwersję między wszystkimi formatami obrazów, w tym JPEG, PNG, GIF, WebP, SVG, BMP, TIFF i innymi.
Ten konwerter jest całkowicie darmowy i zawsze będzie darmowy. Ponieważ działa w Twojej przeglądarce, nie musimy płacić za serwery, więc nie musimy pobierać od Ciebie opłat.
Tak! Możesz konwertować dowolną liczbę plików jednocześnie. Wystarczy wybrać wiele plików podczas ich dodawania.