OCR bất kỳ TIFF nào

Kéo và thả ảnh, bản quét hoặc PDF (tối đa 2.5GB). Chúng tôi trích xuất văn bản ngay trong trình duyệt của bạn — miễn phí, không giới hạn và tệp của bạn không bao giờ rời khỏi thiết bị của bạn.

Riêng tư và an toàn

Mọi thứ xảy ra trong trình duyệt của bạn. Các tệp của bạn không bao giờ chạm vào máy chủ của chúng tôi.

Nhanh như chớp

Không tải lên, không chờ đợi. Chuyển đổi ngay khi bạn thả một tệp.

Thực sự miễn phí

Không cần tài khoản. Không có chi phí ẩn. Không có thủ thuật kích thước tệp.

Nhận dạng ký tự quang học (OCR) biến hình ảnh văn bản—bản quét, ảnh chụp từ điện thoại thông minh, PDF—thành các chuỗi máy có thể đọc được và, ngày càng nhiều, dữ liệu có cấu trúc. OCR hiện đại là một quy trình làm sạch hình ảnh, tìm văn bản, đọc nó và xuất siêu dữ liệu phong phú để các hệ thống hạ nguồn có thể tìm kiếm, lập chỉ mục hoặc trích xuất các trường. Hai tiêu chuẩn đầu ra được sử dụng rộng rãi là hOCR, một định dạng vi mô HTML cho văn bản và bố cục, và ALTO XML, một lược đồ hướng thư viện/lưu trữ; cả hai đều bảo toàn vị trí, thứ tự đọc và các tín hiệu bố cục khác và được hỗ trợ bởi các công cụ phổ biến như Tesseract.

Một chuyến tham quan nhanh về quy trình

Tiền xử lý. Chất lượng OCR bắt đầu bằng việc dọn dẹp hình ảnh: chuyển đổi thang độ xám, khử nhiễu, ngưỡng (nhị phân hóa), và chỉnh lệch. Các hướng dẫn OpenCV kinh điển bao gồm toàn cục, thích ứng Otsu ngưỡng—những yếu tố chính cho các tài liệu có ánh sáng không đồng đều hoặc biểu đồ hai mode. Khi độ sáng thay đổi trong một trang (hãy nghĩ đến ảnh chụp bằng điện thoại), các phương pháp thích ứng thường hoạt động tốt hơn một ngưỡng toàn cục duy nhất; Otsu tự động chọn một ngưỡng bằng cách phân tích biểu đồ. Chỉnh sửa độ nghiêng cũng quan trọng không kém: chỉnh lệch dựa trên Hough (Biến đổi dòng Hough) kết hợp với nhị phân hóa Otsu là một công thức phổ biến và hiệu quả trong các quy trình tiền xử lý sản xuất.

Phát hiện và nhận dạng. OCR thường được chia thành phát hiện văn bản (văn bản ở đâu ?) và nhận dạng văn bản (nó nói gì?). Trong các cảnh tự nhiên và nhiều bản quét, các bộ phát hiện tích chập hoàn toàn như EAST dự đoán hiệu quả các tứ giác ở cấp độ từ hoặc dòng mà không cần các giai đoạn đề xuất nặng nề và được triển khai trong các bộ công cụ phổ biến (ví dụ: hướng dẫn phát hiện văn bản của OpenCV). Trên các trang phức tạp (báo, biểu mẫu, sách), việc phân đoạn các dòng/vùng và suy luận thứ tự đọc rất quan trọng:Kraken triển khai phân đoạn vùng/dòng truyền thống và phân đoạn đường cơ sở thần kinh, với sự hỗ trợ rõ ràng cho các tập lệnh và hướng khác nhau (LTR/RTL/dọc).

Mô hình nhận dạng. Công cụ mã nguồn mở cổ điển Tesseract (do Google mở nguồn, có nguồn gốc từ HP) đã phát triển từ một bộ phân loại ký tự thành một bộ nhận dạng chuỗi dựa trên LSTM và có thể phát hành các tệp PDF có thể tìm kiếm, đầu ra thân thiện với hOCR/ALTO, và nhiều hơn nữa từ CLI. Các bộ nhận dạng hiện đại dựa vào mô hình hóa chuỗi mà không cần các ký tự được phân đoạn trước. Phân loại thời gian kết nối (CTC) vẫn là nền tảng, học các sự sắp xếp giữa các chuỗi đặc trưng đầu vào và chuỗi nhãn đầu ra; nó được sử dụng rộng rãi trong các quy trình xử lý chữ viết tay và văn bản cảnh.

Trong vài năm qua, Transformers đã định hình lại OCR. TrOCR sử dụng một bộ mã hóa Vision Transformer cộng với một bộ giải mã Text Transformer, được đào tạo trên các kho ngữ liệu tổng hợp lớn sau đó được tinh chỉnh trên dữ liệu thực, với hiệu suất mạnh mẽ trên các tiêu chuẩn văn bản in, viết tay và cảnh (xem thêm tài liệu Hugging Face). Song song đó, một số hệ thống bỏ qua OCR để hiểu biết hạ nguồn: Donut (Document Understanding Transformer) là một bộ mã hóa-giải mã không có OCR, trực tiếp xuất ra các câu trả lời có cấu trúc (như JSON khóa-giá trị) từ tài liệu hình ảnh (repo, thẻ mô hình), tránh tích lũy lỗi khi một bước OCR riêng biệt cung cấp cho một hệ thống IE.

Công cụ và thư viện

Nếu bạn muốn đọc văn bản có sẵn trên nhiều tập lệnh, EasyOCR cung cấp một API đơn giản với hơn 80 mô hình ngôn ngữ, trả về các hộp, văn bản và độ tin cậy—tiện dụng cho các nguyên mẫu và các tập lệnh không phải tiếng Latinh. Đối với các tài liệu lịch sử, Kraken tỏa sáng với phân đoạn đường cơ sở và thứ tự đọc nhận biết tập lệnh; để đào tạo cấp dòng linh hoạt, Calamari xây dựng trên dòng dõi Ocropy (Ocropy) với các bộ nhận dạng (đa)LSTM+CTC và một CLI để tinh chỉnh các mô hình tùy chỉnh.

Bộ dữ liệu và tiêu chuẩn

Sự khái quát hóa phụ thuộc vào dữ liệu. Đối với chữ viết tay, Cơ sở dữ liệu chữ viết tay IAM cung cấp các câu tiếng Anh đa dạng về người viết để đào tạo và đánh giá; đó là một bộ tham chiếu lâu đời cho nhận dạng dòng và từ. Đối với văn bản cảnh, COCO-Text đã xếp lớp các chú thích mở rộng trên MS-COCO, với các nhãn cho văn bản in/viết tay, dễ đọc/khó đọc, tập lệnh và bản ghi đầy đủ (xem thêm trang dự án ban đầu). Lĩnh vực này cũng phụ thuộc nhiều vào việc đào tạo trước tổng hợp: SynthText in the Wild kết xuất văn bản thành các bức ảnh với hình học và ánh sáng thực tế, cung cấp khối lượng dữ liệu khổng lồ để đào tạo trước các bộ phát hiện và nhận dạng (tham khảo mã và dữ liệu).

Các cuộc thi dưới chiếc ô Đọc mạnh mẽ của ICDAR giữ cho việc đánh giá có cơ sở. Các nhiệm vụ gần đây nhấn mạnh việc phát hiện/đọc từ đầu đến cuối và bao gồm việc liên kết các từ thành các cụm từ, với mã chính thức báo cáo độ chính xác/độ thu hồi/F-score, giao nhau trên hợp nhất (IoU), và các số liệu khoảng cách chỉnh sửa cấp ký tự—phản ánh những gì các nhà thực hành nên theo dõi.

Định dạng đầu ra và sử dụng hạ nguồn

OCR hiếm khi kết thúc ở văn bản thuần túy. Các kho lưu trữ và thư viện số thích ALTO XML vì nó mã hóa bố cục vật lý (các khối/dòng/từ có tọa độ) cùng với nội dung, và nó kết hợp tốt với bao bì METS. hOCR định dạng vi mô, ngược lại, nhúng cùng một ý tưởng vào HTML/CSS bằng cách sử dụng các lớp như ocr_line ocrx_word, giúp dễ dàng hiển thị, chỉnh sửa và chuyển đổi bằng các công cụ web. Tesseract phơi bày cả hai—ví dụ: tạo hOCR hoặc PDF có thể tìm kiếm trực tiếp từ CLI (hướng dẫn xuất PDF); Các trình bao bọc Python như pytesseract thêm sự tiện lợi. Các bộ chuyển đổi tồn tại để dịch giữa hOCR và ALTO khi các kho lưu trữ có các tiêu chuẩn nhập liệu cố định —xem danh sách được tuyển chọn này của công cụ định dạng tệp OCR.

Hướng dẫn thực hành

  • Bắt đầu với dữ liệu và sự sạch sẽ. Nếu hình ảnh của bạn là ảnh chụp từ điện thoại hoặc bản quét chất lượng hỗn hợp, hãy đầu tư vào việc xác định ngưỡng (thích ứng & Otsu) và chỉnh lệch (Hough) trước khi điều chỉnh bất kỳ mô hình nào. Bạn thường sẽ thu được nhiều lợi ích hơn từ một công thức tiền xử lý mạnh mẽ hơn là từ việc hoán đổi các bộ nhận dạng.
  • Chọn đúng bộ phát hiện. Đối với các trang được quét có các cột thông thường, một bộ phân đoạn trang (vùng → dòng) có thể là đủ; đối với hình ảnh tự nhiên, các bộ phát hiện một lần như EAST là các đường cơ sở mạnh mẽ và cắm vào nhiều bộ công cụ (Ví dụ OpenCV).
  • Chọn một bộ nhận dạng phù hợp với văn bản của bạn. Đối với tiếng Latinh in, Tesseract (LSTM/OEM) chắc chắn và nhanh chóng; đối với nhiều tập lệnh hoặc nguyên mẫu nhanh, EasyOCR hiệu quả; đối với chữ viết tay hoặc các kiểu chữ lịch sử, hãy xem xét Kraken hoặc Calamari và có kế hoạch tinh chỉnh. Nếu bạn cần kết hợp chặt chẽ với việc hiểu tài liệu (trích xuất khóa-giá trị, VQA), hãy đánh giá TrOCR (OCR) so với Donut (không có OCR) trên lược đồ của bạn—Donut có thể loại bỏ toàn bộ một bước tích hợp.
  • Đo lường những gì quan trọng. Đối với các hệ thống từ đầu đến cuối, hãy báo cáo phát hiện F-score và nhận dạng CER/WER (cả hai đều dựa trên khoảng cách chỉnh sửa Levenshtein ; xem CTC); đối với các tác vụ nặng về bố cục, hãy theo dõi IoU/độ chặt và khoảng cách chỉnh sửa được chuẩn hóa ở cấp ký tự như trong bộ đánh giá ICDAR RRC .
  • Xuất các đầu ra phong phú. Ưu tiên hOCR /ALTO (hoặc cả hai) để bạn giữ lại tọa độ và thứ tự đọc—rất quan trọng để làm nổi bật kết quả tìm kiếm, trích xuất bảng/trường , và nguồn gốc. CLI của Tesseract và pytesseract làm cho điều này trở thành một dòng lệnh.

Hướng tới tương lai

Xu hướng mạnh mẽ nhất là sự hội tụ: phát hiện, nhận dạng, mô hình hóa ngôn ngữ và thậm chí cả giải mã cho tác vụ cụ thể đang hợp nhất thành các ngăn xếp Transformer thống nhất. Đào tạo trước trên các kho ngữ liệu tổng hợp lớn vẫn là một hệ số nhân. Các mô hình không có OCR sẽ cạnh tranh quyết liệt ở bất cứ đâu mục tiêu là các đầu ra có cấu trúc thay vì các bản ghi nguyên văn. Cũng mong đợi các triển khai kết hợp: một bộ phát hiện nhẹ cộng với một bộ nhận dạng kiểu TrOCR cho văn bản dạng dài, và một mô hình kiểu Donut cho các biểu mẫu và biên lai.

Đọc thêm và công cụ

Tesseract (GitHub) · Tài liệu Tesseract · Thông số kỹ thuật hOCR · Nền tảng ALTO · Bộ phát hiện EAST · Phát hiện văn bản OpenCV · TrOCR · Donut · COCO-Text · SynthText · Kraken · Calamari OCR · ICDAR RRC · pytesseract · Chữ viết tay IAM · Công cụ định dạng tệp OCR · EasyOCR

Câu hỏi thường gặp

OCR là gì?

Optical Character Recognition (OCR) là một công nghệ được sử dụng để chuyển đổi các loại tài liệu khác nhau, như tài liệu giấy đã quét, tệp PDF hoặc hình ảnh được chụp bằng máy ảnh số, thành dữ liệu có thể chỉnh sửa và tìm kiếm.

OCR hoạt động như thế nào?

OCR hoạt động bằng cách quét hình ảnh hoặc tài liệu đầu vào, phân đoạn hình ảnh thành các ký tự riêng lẻ, và so sánh từng ký tự với cơ sở dữ liệu hình dạng ký tự bằng cách sử dụng nhận dạng mô hình hoặc nhận dạng đặc trưng.

Ứng dụng thực tế của OCR là gì?

OCR được sử dụng trong nhiều lĩnh vực và ứng dụng, bao gồm số hóa tài liệu in, kích hoạt các dịch vụ văn bản thành giọng nói, tự động hóa quá trình nhập dữ liệu, và hỗ trợ người dùng khiếm thị tương tác tốt hơn với văn bản.

OCR luôn chính xác 100% không?

Mặc dù đã có những tiến bộ vượt bậc trong công nghệ OCR, nhưng nó không phải lúc nào cũng hoàn hảo. Độ chính xác có thể thay đổi tùy thuộc vào chất lượng của tài liệu gốc và chi tiết của phần mềm OCR đang được sử dụng.

OCR có nhận dạng được chữ viết tay không?

Mặc dù OCR chủ yếu được thiết kế cho văn bản in, một số hệ thống OCR tiên tiến cũng có thể nhận dạng được chữ viết tay rõ ràng, nhất quán. Tuy nhiên, nhận dạng chữ viết tay thường kém chính xác hơn do sự biến đổi lớn trong các kiểu viết của mỗi người.

OCR có xử lý được nhiều ngôn ngữ không?

Có, nhiều hệ thống phần mềm OCR có thể nhận dạng được nhiều ngôn ngữ. Tuy nhiên, điều quan trọng là phải đảm bảo rằng ngôn ngữ cụ thể đó được hỗ trợ bởi phần mềm bạn đang sử dụng.

Sự khác biệt giữa OCR và ICR là gì?

OCR là viết tắt của Optical Character Recognition và được sử dụng để nhận dạng văn bản in, trong khi ICR, hoặc Intelligent Character Recognition, tiên tiến hơn và được sử dụng để nhận dạng văn bản viết tay.

OCR hoạt động với bất kỳ phông chữ và kích cỡ văn bản nào không?

OCR hoạt động tốt nhất với các phông chữ rõ ràng, dễ đọc và kích cỡ văn bản chuẩn. Mặc dù nó có thể hoạt động với các phông chữ và kích cỡ khác nhau, độ chính xác thường giảm khi đối phó với phông chữ không thông thường hoặc kích cỡ văn bản rất nhỏ.

Những hạn chế của công nghệ OCR là gì?

OCR có thể gặp khó khăn với các tài liệu độ phân giải thấp, phông chữ phức tạp, văn bản in kém, chữ viết tay, và các tài liệu có nền gây ra sự can thiệp với văn bản. Ngoài ra, mặc dù nó có thể hoạt động với nhiều ngôn ngữ, nó có thể không bao phủ hoàn hảo mọi ngôn ngữ.

OCR có quét được văn bản màu hoặc nền màu không?

Có, OCR có thể quét văn bản màu và nền màu, mặc dù nó thường hiệu quả hơn với các sự kết hợp màu đối lập cao, như văn bản đen trên nền trắng. Độ chính xác có thể giảm khi màu văn bản và màu nền không có đủ độ tương phản.

Định dạng TIFF là gì?

Định dạng tệp hình ảnh được gắn thẻ

TILE图像格式代表了一种管理和处理数字图像的创新方法,特别是在性能和效率至关重要的环境中。从本质上讲,TILE旨在优化图像的存储、检索和显示,尤其是在涉及大规模或高分辨率图像的场景中。本说明将深入探讨TILE格式的技术细节、优点和用例,阐明其重要性和潜在应用。

TILE格式的基础方面之一是其独特的结构组织。与将图像视为单一实体的传统图像格式不同,TILE将图像划分为更小、更易于管理的正方形或“图块”。这种平铺方法允许更有效的数据处理,尤其是在处理大图像时。当图像以TILE格式存储时,它会被解析为这些图块,然后每个图块被单独编码。这种划分不仅有助于更快地访问图像的特定部分,而且在处理或显示图像时还可以减少内存开销。

TILE格式采用先进的压缩算法来最小化文件大小,而不会显着损害图像质量。这些算法擅长减少图块内和图块之间的冗余信息,从而实现非常高效的存储。可以根据所需的质量和文件大小之间的平衡调整压缩,使TILE高度适用于各种应用,从网络图像到数字存档。压缩还设计为与平铺系统并行操作,确保在图像的整个生命周期中保持效率。

“渐进加载”的概念是TILE图像格式的另一个基石,它增强了在以不同速度通过网络查看图像的应用程序中的用户体验。渐进加载允许在下载图像时以较低的细节显示图像,随着更多数据的可用性,图像的分辨率逐渐提高。这种方法由图块结构实现,初始粗略视图由图块的子集生成,随着时间的推移,更多图块填充了其他细节。这确保了用户即使在带宽受限的环境中也能更快地与图像交互。

除了其结构和压缩优势外,TILE格式还包含强大的元数据处理功能。TILE中的元数据可以包含广泛的信息,从版权声明和创建日期到地理位置数据和语义标签。此元数据直接嵌入图像文件中,使其易于访问,而无需外部数据库或目录。此外,TILE格式支持动态元数据,允许在图像创建后添加、修改或删除元数据字段。

TILE格式的平铺架构极大地增强了图像的处理和编辑。由于图像被划分为较小的部分,因此可以更有效地执行裁剪、缩放和平移等操作。对于这些操作,只需要加载和处理相关的图块,与处理整个图像相比,大大减少了所需的计算资源。这不仅加速了编辑过程,还可以在实时和处理能力有限的设备上实现更复杂图像处理功能。

可扩展性是TILE图像格式的另一个固有优势。其架构本质上适用于小规模和大规模应用程序,从移动设备到功能强大的台式电脑。可扩展性既扩展到文件大小(可以通过不同的压缩级别进行调整),也扩展到图像尺寸(由于平铺结构,无论大小如何,都可以有效管理)。这使得TILE特别适用于数字制图、卫星图像和医学成像等行业,其中大型、详细的图像很常见。

与现有软件和系统的互操作性对于任何新的图像格式都是一个关键考虑因素,而TILE的设计考虑到了这一点。通过对其图块和元数据使用标准化协议和格式,TILE确保了与广泛的图像处理工具、数据库和分发网络的兼容性。这简化了TILE与现有工作流程的集成,促进了采用,而无需对现有基础设施或实践进行重大更改。

TILE格式的安全性和隐私方面受到了极大的关注。该格式支持图像数据和元数据的加密,确保敏感信息在其整个生命周期中保持受保护状态。加密可以应用于不同的级别,从单个图块到整个图像,在平衡安全需求和性能要求方面提供了灵活性。此外,TILE还集成了数字水印功能,实现了版权保护和图像认证,以防止未经授权的使用和分发。

为了优化TILE格式在不同平台上的性能,开发人员集成了多项高级功能和优化。其中包括多线程支持,它允许并行处理图块,以及硬件加速,它利用GPU的计算能力来执行解码和渲染等任务。此类优化确保了TILE格式即使在资源密集型场景中(例如实时视频流或交互式3D可视化)也能提供高性能。

TILE格式的采用和实施提出了一些需要解决的挑战。一个主要问题是可能需要大量的存储空间,因为在某些条件下,添加的元数据和结构可能导致比某些传统格式更大的文件大小。然而,在性能、可扩展性和质量方面的优势通常可以抵消这些担忧。此外,TILE支持工具和系统的初始开发和集成需要前期投资,尽管效率和能力方面的长期收益是相当可观的。

随着数字领域的不断发展,对能够满足现代应用程序需求的图像格式的需求也在不断增长。TILE格式以其效率、多功能性和高级功能的结合,证明了在根据当前技术能力重新审视传统惯例时,可以实现什么。它增强性能、管理大型复杂图像以及支持强大的元数据和安全措施的能力,使TILE成为数字图像领域的关键创新。

TILE格式的多功能性使其适用于广泛的领域和应用。例如,在数字制图和地理空间分析领域,TILE轻松处理大型、详细图像的能力允许更流畅、更交互地探索地理数据。在医学领域,TILE可以彻底改变数字扫描的存储、访问和分析方式,提供改进的诊断和患者护理。其可扩展性和效率也使其成为文化保护项目的理想选择,其中存档艺术品和历史文件的数字高分辨率复制品至关重要。

展望未来,TILE格式的持续开发和完善对于保持其相关性和最大化其潜在收益至关重要。这不仅需要技术改进,例如增强的压缩算法和更复杂的元数据处理,还需要更广泛的行业合作,以确保与新兴技术和标准的兼容性和互操作性。随着越来越多的组织和行业采用TILE,可以建立反馈循环来指导其发展,确保其始终处于数字成像技术的前沿。

总之,TILE图像格式代表了数字图像管理、处理和利用方面的重要一步。它对图像分辨率、压缩和可扩展性的创新方法解决了现代成像应用程序面临的许多挑战。通过为高效且多功能的图像处理提供一个强大的框架,TILE有可能彻底改变从卫星图像到数字保存等领域,使其成为数字图像未来的关键参与者。随着其不断被采用和适应,TILE有望在捕捉、存储和参与视觉世界的方式上开辟新的可能性。

Định dạng được hỗ trợ

AAI.aai

Hình ảnh Dune AAI

AI.ai

Adobe Illustrator CS2

AVIF.avif

Định dạng tệp hình ảnh AV1

BAYER.bayer

Hình ảnh Bayer thô

BMP.bmp

Hình ảnh bitmap Microsoft Windows

CIN.cin

Tệp hình ảnh Cineon

CLIP.clip

Mặt nạ cắt hình ảnh

CMYK.cmyk

Mẫu thô màu xanh lam, đỏ mạnh, vàng và đen

CUR.cur

Biểu tượng Microsoft

DCX.dcx

ZSoft IBM PC Paintbrush đa trang

DDS.dds

Microsoft DirectDraw Surface

DPX.dpx

Hình ảnh SMTPE 268M-2003 (DPX 2.0)

DXT1.dxt1

Microsoft DirectDraw Surface

EPDF.epdf

Định dạng tài liệu di động được đóng gói

EPI.epi

Định dạng trao đổi PostScript được đóng gói của Adobe

EPS.eps

PostScript được đóng gói của Adobe

EPSF.epsf

PostScript được đóng gói của Adobe

EPSI.epsi

Định dạng trao đổi PostScript được đóng gói của Adobe

EPT.ept

PostScript được đóng gói với xem trước TIFF

EPT2.ept2

PostScript Level II được đóng gói với xem trước TIFF

EXR.exr

Hình ảnh phạm vi động cao (HDR)

FF.ff

Farbfeld

FITS.fits

Hệ thống vận chuyển hình ảnh linh hoạt

GIF.gif

Định dạng trao đổi đồ họa CompuServe

HDR.hdr

Hình ảnh phạm vi động cao

HEIC.heic

Container hình ảnh hiệu quả cao

HRZ.hrz

Slow Scan TeleVision

ICO.ico

Biểu tượng Microsoft

ICON.icon

Biểu tượng Microsoft

J2C.j2c

Dòng mã JPEG-2000

J2K.j2k

Dòng mã JPEG-2000

JNG.jng

Đồ họa mạng JPEG

JP2.jp2

Cú pháp định dạng tệp JPEG-2000

JPE.jpe

Định dạng JFIF của Nhóm chuyên gia hình ảnh liên hợp

JPEG.jpeg

Định dạng JFIF của Nhóm chuyên gia hình ảnh liên hợp

JPG.jpg

Định dạng JFIF của Nhóm chuyên gia hình ảnh liên hợp

JPM.jpm

Cú pháp định dạng tệp JPEG-2000

JPS.jps

Định dạng JPS của Nhóm chuyên gia hình ảnh liên hợp

JPT.jpt

Cú pháp định dạng tệp JPEG-2000

JXL.jxl

Hình ảnh JPEG XL

MAP.map

Cơ sở dữ liệu hình ảnh liền mạch đa phân giải (MrSID)

MAT.mat

Định dạng hình ảnh MATLAB level 5

PAL.pal

Pixmap Palm

PALM.palm

Pixmap Palm

PAM.pam

Định dạng bitmap 2 chiều phổ biến

PBM.pbm

Định dạng bitmap di động (đen và trắng)

PCD.pcd

CD Ảnh

PCT.pct

Apple Macintosh QuickDraw/PICT

PCX.pcx

ZSoft IBM PC Paintbrush

PDB.pdb

Định dạng ImageViewer cơ sở dữ liệu Palm

PDF.pdf

Định dạng tài liệu di động

PDFA.pdfa

Định dạng lưu trữ tài liệu di động

PFM.pfm

Định dạng float di động

PGM.pgm

Định dạng graymap di động (xám)

PGX.pgx

Định dạng không nén JPEG 2000

PICT.pict

Apple Macintosh QuickDraw/PICT

PJPEG.pjpeg

Định dạng JFIF của Nhóm chuyên gia nhiếp ảnh liên hiệp

PNG.png

Đồ họa mạng di động

PNG00.png00

PNG kế thừa độ sâu bit, loại màu từ hình ảnh gốc

PNG24.png24

RGB 24 bit trong suốt hoặc nhị phân (zlib 1.2.11)

PNG32.png32

RGBA 32 bit trong suốt hoặc nhị phân

PNG48.png48

RGB 48 bit trong suốt hoặc nhị phân

PNG64.png64

RGBA 64 bit trong suốt hoặc nhị phân

PNG8.png8

8-bit chỉ mục trong suốt hoặc nhị phân

PNM.pnm

Anymap di động

PPM.ppm

Định dạng pixmap di động (màu)

PS.ps

Tệp Adobe PostScript

PSB.psb

Định dạng tài liệu lớn Adobe

PSD.psd

Bitmap Adobe Photoshop

RGB.rgb

Mẫu thô đỏ, xanh lá cây, và xanh dương

RGBA.rgba

Mẫu thô đỏ, xanh lá cây, xanh dương, và alpha

RGBO.rgbo

Mẫu thô đỏ, xanh lá cây, xanh dương, và độ mờ

SIX.six

Định dạng đồ họa DEC SIXEL

SUN.sun

Rasterfile Sun

SVG.svg

Đồ họa Vector có thể mở rộng

TIFF.tiff

Định dạng tệp hình ảnh được gắn thẻ

VDA.vda

Hình ảnh Truevision Targa

VIPS.vips

Hình ảnh VIPS

WBMP.wbmp

Hình ảnh Bitmap không dây (cấp độ 0)

WEBP.webp

Định dạng hình ảnh WebP

YUV.yuv

CCIR 601 4:1:1 hoặc 4:2:2

Câu hỏi thường gặp

Cái này hoạt động như thế nào?

Bộ chuyển đổi này chạy hoàn toàn trong trình duyệt của bạn. Khi bạn chọn một tệp, nó sẽ được đọc vào bộ nhớ và chuyển đổi sang định dạng đã chọn. Sau đó, bạn có thể tải xuống tệp đã chuyển đổi.

Mất bao lâu để chuyển đổi một tệp?

Việc chuyển đổi bắt đầu ngay lập tức và hầu hết các tệp được chuyển đổi trong vòng chưa đầy một giây. Các tệp lớn hơn có thể mất nhiều thời gian hơn.

Điều gì xảy ra với các tệp của tôi?

Các tệp của bạn không bao giờ được tải lên máy chủ của chúng tôi. Chúng được chuyển đổi trong trình duyệt của bạn và sau đó tệp đã chuyển đổi sẽ được tải xuống. Chúng tôi không bao giờ thấy các tệp của bạn.

Tôi có thể chuyển đổi những loại tệp nào?

Chúng tôi hỗ trợ chuyển đổi giữa tất cả các định dạng hình ảnh, bao gồm JPEG, PNG, GIF, WebP, SVG, BMP, TIFF, v.v.

Cái này giá bao nhiêu?

Bộ chuyển đổi này hoàn toàn miễn phí và sẽ luôn miễn phí. Bởi vì nó chạy trong trình duyệt của bạn, chúng tôi không phải trả tiền cho máy chủ, vì vậy chúng tôi không cần tính phí bạn.

Tôi có thể chuyển đổi nhiều tệp cùng một lúc không?

Đúng! Bạn có thể chuyển đổi bao nhiêu tệp tùy thích cùng một lúc. Chỉ cần chọn nhiều tệp khi bạn thêm chúng.