OCR, czyli Optical Character Recognition, to technologia służąca do konwersji różnych typów dokumentów, takich jak zeskanowane dokumenty papierowe, pliki PDF czy obrazy utworzone za pomocą kamery cyfrowej, na edytowalne i przeszukiwalne dane.
W pierwszym etapie OCR, obraz dokumentu tekstowego jest skanowany. Może to być zdjęcie lub zeskanowany dokument. Celem tego etapu jest stworzenie cyfrowej kopii dokumentu, zamiast wymagać ręcznej transkrypcji. Dodatkowo, proces cyfryzacji może także pomóc w zwiększeniu trwałości materiałów, ponieważ może zmniejszyć ilość manipulacji delikatnymi źródłami. Po zdigitalizowaniu dokumentu, oprogramowanie OCR dzieli obraz na pojedyncze znaki do rozpoznania. Nazywa się to procesem segmentacji. Segmentacja dzieli dokument na linie, słowa a ostatecznie pojedyncze znaki. Podział ten jest skomplikowanym procesem z uwagi na mnogość zaangażowanych czynników - różne czcionki, różne rozmiary tekstu i zróżnicowane wyrównanie tekstu, aby wymienić tylko kilka. Po segmentacji, algorytm OCR wykorzystuje rozpoznawanie wzorców, aby zidentyfikować każdy pojedynczy znak. Dla każdego znaku, algorytm porównuje go z bazą kształtów znaków. Najbliższe dopasowanie jest następnie wybierane jako identyfikacja znaku. W rozpoznawaniu cech, bardziej zaawansowanej formie OCR, algorytm bada nie tylko kształt, ale także bierze pod uwagę linie i krzywe w wzorcu. OCR ma liczne praktyczne zastosowania - od cyfryzacji dokumentów drukowanych, umożliwiając usługi tekstu na mowę, automatyzując procesy wprowadzania danych, aż po pomoc użytkownikom z wadą wzroku w lepszym interakcji z tekstem. Warto jednak zauważyć, że proces OCR nie jest nieomylny i może popełniać błędy, szczególnie przy niskiej rozdzielczości dokumentów, skomplikowanych czcionek, czy źle wydrukowanych tekstach. Stąd, dokładność systemów OCR znacznie różni się w zależności od jakości oryginalnego dokumentu i specyfikacji używanego oprogramowania OCR. OCR jest kluczową technologią w nowoczesnych praktykach ekstrakcji i digitalizacji danych. Oszczędza znacznie czasu i zasobów, zmniejszając potrzebę ręcznego wprowadzania danych i zapewniając niezawodne, efektywne podejście do przekształcania dokumentów fizycznych na format cyfrowy.
Optical Character Recognition (OCR) to technologia używana do konwersji różnych rodzajów dokumentów, takich jak zeskanowane dokumenty papierowe, pliki PDF lub obrazy zrobione cyfrowym aparatem fotograficznym, na edytowalne i przeszukiwalne dane.
OCR działa poprzez skanowanie obrazu wejściowego lub dokumentu, segmentację obrazu na indywidualne znaki, a następnie porównanie każdego znaku z bazą danych kształtów znaków za pomocą rozpoznawania wzorców lub rozpoznawania cech.
OCR jest używany w różnych sektorach i aplikacjach, w tym do digitalizacji wydrukowanych dokumentów, włączania usług tekst-na-mowę, automatyzacji procesów wprowadzania danych i pomocy osobom niewidomym w lepszej interakcji z tekstem.
Pomimo wielkiego postępu w technologii OCR, nie jest ona nieomylna. Dokładność może różnić się w zależności od jakości oryginalnego dokumentu i specyfiki używanego oprogramowania OCR.
Chociaż OCR jest głównie przeznaczony dla tekstu drukowanego, niektóre zaawansowane systemy OCR są także w stanie rozpoznać jasne, konsekwentne pismo odręczne. Jednak zazwyczaj rozpoznawanie pisma odręcznego jest mniej dokładne ze względu na dużą różnorodność indywidualnych stylów pisania.
Tak, wiele systemów oprogramowania OCR potrafi rozpoznawać wiele języków. Ważne jest jednak, aby upewnić się, że konkretny język jest obsługiwany przez oprogramowanie, którego używasz.
OCR to skrót od Optical Character Recognition i służy do rozpoznawania tekstu drukowanego, natomiast ICR, czyli Intelligent Character Recognition, jest bardziej zaawansowany i służy do rozpoznawania tekstu pisanego odręcznie.
OCR najlepiej radzi sobie z czytelnymi, łatwymi do odczytania fontami i standardowymi rozmiarami tekstu. Chociaż może pracować z różnymi fontami i rozmiarami, dokładność zwykle maleje przy niecodziennych fontach lub bardzo małych rozmiarach tekstu.
OCR może mieć problemy z dokumentami o niskiej rozdzielczości, złożonymi czcionkami, źle wydrukowanymi tekstami, pismem odręcznym oraz dokumentami z tłem, które przeszkadza w tekście. Ponadto, mimo że może obsługiwać wiele języków, nie jest w stanie idealnie pokryć wszystkich języków.
Tak, OCR potrafi skanować kolorowy tekst i tło, choć zazwyczaj jest skuteczniejszy w przypadku wysokokontrastowych kombinacji kolorów, takich jak czarny tekst na białym tle. Dokładność może spadać, gdy kolor tekstu i tła nie tworzą wystarczającego kontrastu.
Format PBM (Portable Bitmap) jest jednym z najprostszych i najwcześniejszych formatów plików graficznych używanych do przechowywania obrazów monochromatycznych. Jest częścią pakietu Netpbm, który obejmuje również PGM (Portable GrayMap) dla obrazów w skali szarości i PPM (Portable PixMap) dla obrazów kolorowych. Format PBM został zaprojektowany tak, aby był niezwykle łatwy do odczytu i zapisu w programie oraz aby był jasny i jednoznaczny. Nie jest przeznaczony do samodzielnego użytku, lecz raczej jako najmniejszy wspólny mianownik do konwersji między różnymi formatami obrazów.
Format PBM obsługuje tylko obrazy czarno-białe (1-bitowe). Każdy piksel na obrazie jest reprezentowany przez pojedynczy bit – 0 dla bieli i 1 dla czerni. Prostota formatu sprawia, że jest łatwy do manipulowania za pomocą podstawowych narzędzi do edycji tekstu lub języków programowania bez potrzeby korzystania ze specjalistycznych bibliotek przetwarzania obrazu. Jednak ta prostota oznacza również, że pliki PBM mogą być większe niż bardziej zaawansowane formaty, takie jak JPEG lub PNG, które wykorzystują algorytmy kompresji w celu zmniejszenia rozmiaru pliku.
Istnieją dwie odmiany formatu PBM: format ASCII (zwykły), znany jako P1, oraz format binarny (surowy), znany jako P4. Format ASCII jest czytelny dla człowieka i można go utworzyć lub edytować za pomocą prostego edytora tekstu. Format binarny nie jest czytelny dla człowieka, ale jest bardziej oszczędny pod względem miejsca i szybszy do odczytu i zapisu dla programów. Pomimo różnic w przechowywaniu, oba formaty reprezentują ten sam typ danych obrazu i można je konwertować między sobą bez utraty informacji.
Struktura pliku PBM w formacie ASCII rozpoczyna się od dwubajtowego magicznego numeru, który identyfikuje typ pliku. Dla formatu PBM ASCII jest to „P1”. Po magicznym numerze znajduje się spacja (odstępy, znaki TAB, CR, LF), a następnie specyfikacja szerokości, która jest liczbą kolumn na obrazie, po której następuje więcej spacji, a następnie specyfikacja wysokości, która jest liczbą wierszy na obrazie. Po specyfikacji wysokości znajduje się więcej spacji, a następnie rozpoczynają się dane pikseli.
Dane pikseli w pliku ASCII PBM składają się z serii „0” i „1”, przy czym każde „0” reprezentuje biały piksel, a każde „1” reprezentuje czarny piksel. Piksele są ułożone w wierszach, przy czym każdy wiersz pikseli znajduje się w nowym wierszu. Spacje są dozwolone w dowolnym miejscu w danych pikseli, z wyjątkiem sekwencji dwuznakowej (nie są dozwolone między dwoma znakami sekwencji). Koniec pliku jest osiągany po odczytaniu szerokość*wysokość bitów.
Natomiast binarny format PBM zaczyna się od magicznego numeru „P4” zamiast „P1”. Po magicznym numerze format pliku jest taki sam jak w wersji ASCII, aż do momentu rozpoczęcia danych pikseli. Binarne dane pikseli są pakowane w bajty, przy czym najbardziej znaczący bit (MSB) każdego bajtu reprezentuje najbardziej wysunięty na lewo piksel, a każdy wiersz pikseli jest wypełniany w razie potrzeby, aby wypełnić ostatni bajt. Bity wypełnienia nie są istotne i ich wartości są ignorowane.
Format binarny jest bardziej oszczędny pod względem miejsca, ponieważ wykorzystuje pełny bajt do reprezentowania ośmiu pikseli, w przeciwieństwie do formatu ASCII, który wykorzystuje co najmniej osiem bajtów (jeden znak na piksel plus spacja). Jednak format binarny nie jest czytelny dla człowieka i wymaga programu, który rozumie format PBM, aby wyświetlić lub edytować obraz.
Tworzenie pliku PBM programowo jest stosunkowo proste. W języku programowania takim jak C można otworzyć plik w trybie zapisu, wyprowadzić odpowiedni magiczny numer, zapisać szerokość i wysokość jako liczby ASCII oddzielone spacją, a następnie wyprowadzić dane pikseli. W przypadku ASCII PBM dane pikseli można zapisać jako serię „0” i „1” z odpowiednimi podziałami wierszy. W przypadku binarnego PBM dane pikseli muszą być spakowane w bajty i zapisane do pliku w trybie binarnym.
Odczytywanie pliku PBM jest również proste. Program odczytuje magiczny numer, aby określić format, pomija spacje, odczytuje szerokość i wysokość, pomija więcej spacji, a następnie odczytuje dane pikseli. W przypadku ASCII PBM program może odczytywać znaki jeden po drugim i interpretować je jako wartości pikseli. W przypadku binarnego PBM program musi odczytywać bajty i rozpakowywać je na poszczególne bity, aby uzyskać wartości pikseli.
Format PBM nie obsługuje żadnej formy kompresji ani kodowania, co oznacza, że rozmiar pliku jest wprost proporcjonalny do liczby pikseli na obrazie. Może to skutkować bardzo dużymi plikami w przypadku obrazów o wysokiej rozdzielczości. Jednak prostota formatu sprawia, że jest idealny do nauki przetwarzania obrazu, do użytku w sytuacjach, gdy wierność obrazu jest ważniejsza niż rozmiar pliku, lub do użytku jako format pośredni w procesach konwersji obrazu.
Jedną z zalet formatu PBM jest jego prostota i łatwość manipulowania nim. Na przykład, aby odwrócić obraz PBM (zamienić wszystkie czarne piksele na białe i odwrotnie), można po prostu zastąpić wszystkie „0” na „1” i wszystkie „1” na „0” w danych pikseli. Można to zrobić za pomocą prostego skryptu lub programu do przetwarzania tekstu. Podobnie inne podstawowe operacje na obrazach, takie jak obracanie lub odbijanie lustrzane, można zaimplementować za pomocą prostych algorytmów.
Pomimo swojej prostoty format PBM nie jest szeroko stosowany do ogólnego przechowywania lub wymiany obrazów. Wynika to przede wszystkim z braku kompresji, co czyni go nieefektywnym do przechowywania dużych obrazów lub do użytku w Internecie, gdzie przepustowość może być problemem. Nowocześniejsze formaty, takie jak JPEG, PNG i GIF, oferują różne formy kompresji i są lepiej przystosowane do tych celów. Jednak format PBM jest nadal używany w niektórych kontekstach, szczególnie w przypadku prostych grafik w rozwoju oprogramowania oraz jako narzędzie dydaktyczne do nauki koncepcji przetwarzania obrazu.
Pakiet Netpbm, który obejmuje format PBM, zapewnia kolekcję narzędzi do manipulowania plikami PBM, PGM i PPM. Narzędzia te umożliwiają konwersję między formatami Netpbm a innymi popularnymi formatami obrazów, a także podstawowe operacje przetwarzania obrazu, takie jak skalowanie, przycinanie i manipulowanie kolorami. Pakiet jest zaprojektowany tak, aby był łatwo rozszerzalny, z prostym interfejsem do dodawania nowych funkcji.
Podsumowując, format obrazu PBM jest prostym, bez zbędnych dodatków formatem pliku do przechowywania monochromatycznych obrazów bitmapowych. Jego prostota sprawia, że jest łatwy do zrozumienia i manipulowania, co może być korzystne w celach edukacyjnych lub w przypadku prostych zadań przetwarzania obrazu. Chociaż nie nadaje się do wszystkich zastosowań ze względu na brak kompresji i wynikające z tego duże rozmiary plików, pozostaje użytecznym formatem w określonych kontekstach, w których jego zalety są najbardziej korzystne. Format PBM, wraz z resztą pakietu Netpbm, nadal jest cennym narzędziem dla osób pracujących z podstawowym przetwarzaniem obrazu i konwersją formatów.
Ten konwerter działa całkowicie w Twojej przeglądarce. Kiedy wybierasz plik, jest on wczytywany do pamięci i konwertowany na wybrany format. Następnie możesz pobrać skonwertowany plik.
Konwersje zaczynają się natychmiast, a większość plików jest konwertowana w mniej niż sekundę. Większe pliki mogą wymagać więcej czasu.
Twoje pliki nigdy nie są przesyłane na nasze serwery. Są konwertowane w Twojej przeglądarce, a następnie pobierany jest skonwertowany plik. Nigdy nie widzimy Twoich plików.
Obsługujemy konwersję między wszystkimi formatami obrazów, w tym JPEG, PNG, GIF, WebP, SVG, BMP, TIFF i więcej.
Ten konwerter jest całkowicie darmowy i zawsze będzie darmowy. Ponieważ działa w Twojej przeglądarce, nie musimy płacić za serwery, więc nie musimy Cię obciążać opłatami.
Tak! Możesz konwertować tyle plików, ile chcesz na raz. Wystarczy wybrać wiele plików podczas ich dodawania.