OCR dowolnego PALM

Upuść zdjęcie, skan lub plik PDF (do 2.5GB). Wyodrębniamy tekst bezpośrednio w Twojej przeglądarce — bezpłatnie, bez ograniczeń, a Twoje pliki nigdy nie opuszczają Twojego urządzenia.

Prywatne i bezpieczne

Wszystko dzieje się w Twojej przeglądarce. Twoje pliki nigdy nie dotykają naszych serwerów.

Błyskawicznie

Bez przesyłania, bez czekania. Konwertuj w momencie upuszczenia pliku.

Rzeczywiście za darmo

Nie wymaga konta. Brak ukrytych kosztów. Brak sztuczek z rozmiarem pliku.

Optyczne rozpoznawanie znaków (OCR) zamienia obrazy tekstu — skany, zdjęcia ze smartfonów, pliki PDF — na ciągi znaków czytelne dla maszyn, a coraz częściej na dane strukturalne. Nowoczesne OCR to potok, który czyści obraz, znajduje tekst, odczytuje go i eksportuje bogate metadane, dzięki czemu systemy podrzędne mogą wyszukiwać, indeksować lub wyodrębniać pola. Dwa szeroko stosowane standardy wyjściowe to hOCR, mikroformat HTML dla tekstu i układu, oraz ALTO XML, schemat zorientowany na biblioteki/archiwa; oba zachowują pozycje, kolejność czytania i inne wskazówki dotyczące układu i są obsługiwane przez popularne silniki, takie jak Tesseract.

Szybka wycieczka po potoku

Przetwarzanie wstępne. Jakość OCR zaczyna się od czyszczenia obrazu: konwersji do skali szarości, odszumiania, progowania (binaryzacji) i prostowania. Kanoniczne samouczki OpenCV obejmują globalne, adaptacyjne i Otsu progowanie — podstawowe elementy dla dokumentów o nierównomiernym oświetleniu lub bimodalnych histogramach. Gdy oświetlenie zmienia się na stronie (pomyśl o zdjęciach z telefonu), metody adaptacyjne często przewyższają pojedynczy globalny próg; Otsu automatycznie wybiera próg, analizując histogram. Równie ważna jest korekcja nachylenia: prostowanie oparte na transformacji Hougha (Transformacja Hougha) w połączeniu z binaryzacją Otsu to powszechny i skuteczny przepis w produkcyjnych potokach przetwarzania wstępnego.

Wykrywanie a rozpoznawanie. OCR jest zazwyczaj podzielone na wykrywanie tekstu (gdzie jest tekst?) i rozpoznawanie tekstu (co on mówi?). W scenach naturalnych i wielu skanach w pełni konwolucyjne detektory, takie jak EAST skutecznie przewidują czworokąty na poziomie słów lub linii bez ciężkich etapów propozycji i są zaimplementowane w popularnych zestawach narzędzi (np. samouczek wykrywania tekstu OpenCV). Na złożonych stronach (gazety, formularze, książki) ważna jest segmentacja linii/regionów i wnioskowanie o kolejności czytania:Kraken implementuje tradycyjną segmentację stref/linii i neuronową segmentację linii bazowej, z wyraźnym wsparciem dla różnych pism i kierunków (LTR/RTL/pionowo).

Modele rozpoznawania. Klasyczny koń roboczy open-source Tesseract (udostępniony jako open-source przez Google, z korzeniami w HP) ewoluował z klasyfikatora znaków w sekwencyjny rozpoznawacz oparty na LSTM i może emitować przeszukiwalne pliki PDF, wyjścia przyjazne dla hOCR/ALTOi więcej z CLI. Nowoczesne rozpoznawacze opierają się na modelowaniu sekwencji bez wstępnie posegmentowanych znaków. Connectionist Temporal Classification (CTC) pozostaje fundamentalne, ucząc się dopasowań między sekwencjami cech wejściowych a sekwencjami etykiet wyjściowych; jest szeroko stosowane w potokach rozpoznawania pisma ręcznego i tekstu w scenach.

W ostatnich latach Transformery przekształciły OCR. TrOCR używa kodera Vision Transformer oraz dekodera Text Transformer, trenowanego na dużych korpusach syntetycznych, a następnie dostrajanego na rzeczywistych danych, z dużą wydajnością w testach porównawczych tekstu drukowanego, pisanego odręcznie i w scenach (zobacz także dokumentację Hugging Face). Równolegle niektóre systemy omijają OCR na rzecz zrozumienia na dalszym etapie: Donut (Document Understanding Transformer) to koder-dekoder bez OCR, który bezpośrednio generuje ustrukturyzowane odpowiedzi (takie jak JSON klucz-wartość) z obrazów dokumentów (repo, karta modelu), unikając kumulacji błędów, gdy oddzielny krok OCR zasila system IE.

Silniki i biblioteki

Jeśli chcesz gotowe do użycia rozwiązanie do odczytu tekstu w wielu pismach, EasyOCR oferuje proste API z ponad 80 modelami językowymi, zwracając ramki, tekst i pewność — przydatne do prototypów i pism nielacińskich. W przypadku dokumentów historycznych Kraken wyróżnia się segmentacją linii bazowej i świadomą pisma kolejnością czytania; do elastycznego trenowania na poziomie linii, Calamari opiera się na dziedzictwie Ocropy (Ocropy) z rozpoznawaczami (multi-)LSTM+CTC i CLI do dostrajania niestandardowych modeli.

Zbiory danych i testy porównawcze

Generalizacja zależy od danych. W przypadku pisma ręcznego Baza danych pisma ręcznego IAM dostarcza zróżnicowane pod względem pisarzy zdania w języku angielskim do trenowania i oceny; jest to długoletni zestaw referencyjny do rozpoznawania linii i słów. W przypadku tekstu w scenach COCO-Text nałożył obszerne adnotacje na MS-COCO, z etykietami dla tekstu drukowanego/pisanego odręcznie, czytelnego/nieczytelnego, pisma i pełnych transkrypcji (zobacz także oryginalną stronę projektu). Dziedzina ta w dużym stopniu opiera się również na syntetycznym wstępnym trenowaniu: SynthText in the Wild renderuje tekst na fotografiach z realistyczną geometrią i oświetleniem, dostarczając ogromne ilości danych do wstępnego trenowania detektorów i rozpoznawaczy (odniesienie kod i dane).

Konkursy pod parasolem Robust Reading ICDAR utrzymują ocenę w ryzach. Ostatnie zadania kładą nacisk na wykrywanie/odczyt od końca do końca i obejmują łączenie słów w frazy, z oficjalnym kodem raportującym precyzję/odwołanie/F-score, przecięcie nad sumą (IoU) i metryki odległości edycji na poziomie znaków — odzwierciedlając to, co praktycy powinni śledzić.

Formaty wyjściowe i dalsze wykorzystanie

OCR rzadko kończy się na czystym tekście. Archiwa i biblioteki cyfrowe preferują ALTO XML , ponieważ koduje on fizyczny układ (bloki/linie/słowa ze współrzędnymi) obok treści i dobrze współgra z opakowaniem METS. hOCR mikroformat, w przeciwieństwie do tego, osadza ten sam pomysł w HTML/CSS, używając klas takich jak ocr_line i ocrx_word, co ułatwia wyświetlanie, edycję i transformację za pomocą narzędzi internetowych. Tesseract udostępnia oba — np. generowanie hOCR lub przeszukiwalnych plików PDF bezpośrednio z CLI (przewodnik po wyjściu PDF); opakowania Pythona, takie jak pytesseract dodają wygody. Istnieją konwertery do tłumaczenia między hOCR a ALTO, gdy repozytoria mają stałe standardy przyjmowania — zobacz tę wyselekcjonowaną listę narzędzi formatu plików OCR.

Praktyczne wskazówki

  • Zacznij od danych i czystości. Jeśli Twoje obrazy to zdjęcia z telefonu lub skany o mieszanej jakości, zainwestuj w progowanie (adaptacyjne i Otsu) i prostowanie (Hough) przed jakimkolwiek dostrajaniem modelu. Często zyskasz więcej dzięki solidnemu przepisowi na przetwarzanie wstępne niż dzięki wymianie rozpoznawaczy.
  • Wybierz odpowiedni detektor. W przypadku zeskanowanych stron z regularnymi kolumnami wystarczający może być segmentator stron (strefy → linie); w przypadku obrazów naturalnych detektory jednokrotne, takie jak EAST są silnymi punktami odniesienia i można je podłączyć do wielu zestawów narzędzi (przykład OpenCV).
  • Wybierz rozpoznawacz pasujący do Twojego tekstu. W przypadku drukowanego tekstu łacińskiego Tesseract (LSTM/OEM) jest solidny i szybki; w przypadku wielu pism lub szybkich prototypów EasyOCR jest produktywny; w przypadku pisma ręcznego lub historycznych krojów pisma rozważ Kraken lub Calamari i zaplanuj dostrajanie. Jeśli potrzebujesz ścisłego powiązania ze zrozumieniem dokumentów (ekstrakcja klucz-wartość, VQA), oceń TrOCR (OCR) w porównaniu z Donut (bez OCR) na swoim schemacie — Donut może usunąć cały krok integracji.
  • Mierz to, co ma znaczenie. W przypadku systemów od końca do końca raportuj wykrywanie F-score i rozpoznawanie CER/WER (oba oparte na odległości edycji Levenshteina ; zobacz CTC); w przypadku zadań z dużą ilością układu śledź IoU/ciasność i znormalizowaną odległość edycji na poziomie znaków, jak w zestawach ewaluacyjnych ICDAR RRC .
  • Eksportuj bogate wyniki. Preferuj hOCR /ALTO (lub oba), aby zachować współrzędne i kolejność czytania — kluczowe dla podświetlania trafień wyszukiwania, ekstrakcji tabel/pól i pochodzenia. CLI Tesseracta i pytesseract sprawiają, że jest to jedno polecenie.

Patrząc w przyszłość

Najsilniejszym trendem jest konwergencja: wykrywanie, rozpoznawanie, modelowanie języka, a nawet dekodowanie specyficzne dla zadania łączą się w zunifikowane stosy Transformerów. Wstępne trenowanie na dużych korpusach syntetycznych pozostaje mnożnikiem siły. Modele bez OCR będą agresywnie konkurować wszędzie tam, gdzie celem są ustrukturyzowane wyniki, a nie dosłowne transkrypcje. Spodziewaj się również wdrożeń hybrydowych: lekkiego detektora plus rozpoznawacza w stylu TrOCR dla długiego tekstu i modelu w stylu Donut dla formularzy i paragonów.

Dalsza lektura i narzędzia

Tesseract (GitHub) · Dokumentacja Tesseract · Specyfikacja hOCR · Tło ALTO · Detektor EAST · Wykrywanie tekstu OpenCV · TrOCR · Donut · COCO-Text · SynthText · Kraken · Calamari OCR · ICDAR RRC · pytesseract · Pismo ręczne IAM · Narzędzia formatu plików OCR · EasyOCR

Często zadawane pytania

Czym jest OCR?

Optical Character Recognition (OCR) to technologia używana do konwersji różnych rodzajów dokumentów, takich jak zeskanowane dokumenty papierowe, pliki PDF lub obrazy zrobione cyfrowym aparatem fotograficznym, na edytowalne i przeszukiwalne dane.

Jak działa OCR?

OCR działa poprzez skanowanie obrazu wejściowego lub dokumentu, segmentację obrazu na indywidualne znaki, a następnie porównanie każdego znaku z bazą danych kształtów znaków za pomocą rozpoznawania wzorców lub rozpoznawania cech.

Jakie są praktyczne zastosowania OCR?

OCR jest używany w różnych sektorach i aplikacjach, w tym do digitalizacji wydrukowanych dokumentów, włączania usług tekst-na-mowę, automatyzacji procesów wprowadzania danych i pomocy osobom niewidomym w lepszej interakcji z tekstem.

Czy OCR jest zawsze w 100% dokładny?

Pomimo wielkiego postępu w technologii OCR, nie jest ona nieomylna. Dokładność może różnić się w zależności od jakości oryginalnego dokumentu i specyfiki używanego oprogramowania OCR.

Czy OCR rozpoznaje pismo odręczne?

Chociaż OCR jest głównie przeznaczony dla tekstu drukowanego, niektóre zaawansowane systemy OCR są także w stanie rozpoznać jasne, konsekwentne pismo odręczne. Jednak zazwyczaj rozpoznawanie pisma odręcznego jest mniej dokładne ze względu na dużą różnorodność indywidualnych stylów pisania.

Czy OCR obsługuje wiele języków?

Tak, wiele systemów oprogramowania OCR potrafi rozpoznawać wiele języków. Ważne jest jednak, aby upewnić się, że konkretny język jest obsługiwany przez oprogramowanie, którego używasz.

Jaka jest różnica między OCR a ICR?

OCR to skrót od Optical Character Recognition i służy do rozpoznawania tekstu drukowanego, natomiast ICR, czyli Intelligent Character Recognition, jest bardziej zaawansowany i służy do rozpoznawania tekstu pisanego odręcznie.

Czy OCR działa z dowolnym fontem i rozmiarem tekstu?

OCR najlepiej radzi sobie z czytelnymi, łatwymi do odczytania fontami i standardowymi rozmiarami tekstu. Chociaż może pracować z różnymi fontami i rozmiarami, dokładność zwykle maleje przy niecodziennych fontach lub bardzo małych rozmiarach tekstu.

Jakie są ograniczenia technologii OCR?

OCR może mieć problemy z dokumentami o niskiej rozdzielczości, złożonymi czcionkami, źle wydrukowanymi tekstami, pismem odręcznym oraz dokumentami z tłem, które przeszkadza w tekście. Ponadto, mimo że może obsługiwać wiele języków, nie jest w stanie idealnie pokryć wszystkich języków.

Czy OCR potrafi skanować kolorowy tekst lub tło?

Tak, OCR potrafi skanować kolorowy tekst i tło, choć zazwyczaj jest skuteczniejszy w przypadku wysokokontrastowych kombinacji kolorów, takich jak czarny tekst na białym tle. Dokładność może spadać, gdy kolor tekstu i tła nie tworzą wystarczającego kontrastu.

Jaki jest format PALM?

Pikselmapa Palm

Format obrazu PALM, znany również jako Palm Bitmap, to format pliku grafiki rastrowej związany z urządzeniami Palm OS. Został zaprojektowany do przechowywania obrazów na komputerach osobistych Palm OS (Personal Digital Assistants), które były popularne pod koniec lat 90. i na początku XXI wieku. Format jest specjalnie dostosowany do ograniczeń wyświetlania i pamięci tych urządzeń przenośnych, dlatego jest zoptymalizowany pod kątem obrazów o niskiej rozdzielczości i indeksowanych kolorach, które można szybko renderować na ekranie urządzenia.

Obrazy PALM charakteryzują się prostotą i wydajnością. Format obsługuje ograniczoną paletę kolorów, zwykle do 256 kolorów, co jest wystarczające dla małych ekranów komputerów osobistych. To podejście indeksowanych kolorów oznacza, że każdy piksel na obrazie nie jest reprezentowany przez własną wartość koloru, ale raczej przez indeks do tabeli kolorów, która zawiera rzeczywiste wartości RGB (czerwony, zielony, niebieski). Ta metoda reprezentacji kolorów jest bardzo wydajna pod względem pamięci, co jest kluczowe dla urządzeń o ograniczonej pamięci RAM i pojemności pamięci masowej.

Podstawowa struktura pliku obrazu PALM składa się z nagłówka, palety kolorów (jeśli obraz nie jest monochromatyczny), danych bitmapy i ewentualnie informacji o przezroczystości. Nagłówek zawiera metadane dotyczące obrazu, takie jak jego szerokość i wysokość w pikselach, głębia bitowa (która określa liczbę kolorów) oraz flagi wskazujące, czy obraz ma indeks przezroczystości lub jest skompresowany.

Kompresja to kolejna cecha formatu obrazu PALM. Aby zaoszczędzić jeszcze więcej miejsca, obrazy PALM można kompresować za pomocą algorytmu kodowania długości serii (RLE). RLE to forma bezstratnej kompresji danych, w której sekwencje tej samej wartości danych (serie) są przechowywane jako pojedyncza wartość danych i liczba. Jest to szczególnie skuteczne w przypadku obrazów z dużymi obszarami jednolitego koloru, co jest powszechne w ikonach i elementach interfejsu użytkownika używanych w komputerach osobistych.

Przezroczystość w obrazach PALM jest obsługiwana za pomocą indeksu przezroczystości. Ten indeks wskazuje na kolor w palecie, który jest oznaczony jako przezroczysty, umożliwiając nakładanie obrazów na różne tła bez blokowatego, nieprzezroczystego prostokąta wokół obrazu. Ta funkcja jest niezbędna do tworzenia płynnego interfejsu użytkownika, w którym ikony i inne grafiki muszą łączyć się ze swoim tłem.

Paleta kolorów w obrazie PALM jest kluczowym elementem, ponieważ definiuje zestaw kolorów używanych w obrazie. Paleta jest tablicą wpisów kolorów, gdzie każdy wpis jest zwykle 16-bitową wartością reprezentującą kolor RGB. Głębia bitowa obrazu określa maksymalną liczbę kolorów w palecie. Na przykład obraz o głębokości 1 bita miałby paletę 2-kolorową (zwykle czarno-białą), podczas gdy obraz o głębokości 8 bitów mógłby mieć do 256 kolorów.

Dane bitmapy w pliku obrazu PALM to reprezentacja obrazu piksel po pikselu. Każdy piksel jest przechowywany jako indeks w palecie kolorów. Przechowywanie tych danych może odbywać się w surowym, nieskompresowanym formacie lub skompresowanym za pomocą RLE. W formacie nieskompresowanym dane bitmapy są po prostu sekwencją indeksów, jeden dla każdego piksela, ułożonych w wierszach od góry do dołu i kolumnach od lewej do prawej.

Jednym z unikalnych aspektów formatu obrazu PALM jest obsługa wielu głębi bitowych w jednym obrazie. Oznacza to, że obraz może zawierać obszary o różnych rozdzielczościach kolorów. Na przykład obraz PALM może mieć ikonę o wysokiej głębi kolorów (8 bitów) obok elementu dekoracyjnego o niskiej głębi kolorów (1 bit). Ta elastyczność pozwala na wydajne wykorzystanie pamięci poprzez używanie wyższych głębi bitowych tylko tam, gdzie jest to konieczne dla jakości wizualnej obrazu.

Format obrazu PALM obejmuje również obsługę niestandardowych ikon i grafiki menu, które są niezbędne dla interfejsu użytkownika aplikacji Palm OS. Obrazy te można zintegrować z kodem aplikacji i wyświetlać na urządzeniu za pomocą interfejsu API Palm OS (Application Programming Interface). Interfejs API zapewnia funkcje ładowania, wyświetlania i manipulowania obrazami PALM, co ułatwia programistom włączanie grafiki do swoich aplikacji.

Pomimo swojej wydajności i użyteczności w kontekście urządzeń Palm OS, format obrazu PALM ma kilka ograniczeń w porównaniu z bardziej nowoczesnymi formatami obrazu. Na przykład nie obsługuje obrazów w prawdziwych kolorach (24 bity lub więcej), co ogranicza jego zastosowanie w aplikacjach wymagających grafiki o wysokiej wierności. Ponadto format nie obsługuje zaawansowanych funkcji, takich jak warstwy, kanały alfa (poza prostą przezroczystością) lub metadane, takie jak EXIF (Exchangeable Image File Format), powszechnie występujące w formatach takich jak JPEG lub PNG.

Format obrazu PALM nie jest szeroko stosowany poza urządzeniami i aplikacjami Palm OS. Wraz ze spadkiem popularności komputerów osobistych Palm OS i pojawieniem się smartfonów i innych urządzeń mobilnych z bardziej zaawansowanymi systemami operacyjnymi i możliwościami graficznymi, format PALM stał się w dużej mierze przestarzały. Nowoczesne urządzenia mobilne obsługują szeroką gamę formatów obrazu, w tym JPEG, PNG i GIF, które oferują większą głębię kolorów, lepszą kompresję i więcej funkcji niż format PALM.

Do celów historycznych i archiwalnych może być konieczne przekonwertowanie obrazów PALM na bardziej współczesne formaty. Można to zrobić za pomocą specjalistycznych narzędzi programowych, które mogą odczytać format PALM i przekształcić go w format taki jak PNG lub JPEG. Narzędzia te zwykle analizują strukturę pliku PALM, wyodrębniają dane bitmapy i paletę kolorów, a następnie rekonstruują obraz w formacie docelowym, zachowując jak najwięcej oryginalnej jakości obrazu.

Pod względem rozszerzenia pliku obrazy PALM zwykle używają rozszerzenia „.pdb” (Palm Database), ponieważ są często przechowywane w plikach Palm Database, które są kontenerami dla różnych typów danych używanych przez aplikacje Palm OS. Dane obrazu są przechowywane w określonym rekordzie w pliku PDB, do którego aplikacja może uzyskać dostęp w razie potrzeby. Ta integracja z systemem Palm Database ułatwia pakowanie obrazów z innymi danymi aplikacji, takimi jak tekst lub ustawienia konfiguracji.

Tworzenie i manipulowanie obrazami PALM wymaga zrozumienia specyfikacji i ograniczeń formatu. Programiści pracujący z Palm OS zwykle używali zestawów narzędzi do tworzenia oprogramowania (SDK) dostarczanych przez Palm, które zawierały narzędzia i dokumentację do pracy z obrazami PALM. Te SDK zapewniały biblioteki do obsługi obrazów, umożliwiając programistom tworzenie, modyfikowanie i wyświetlanie obrazów PALM w swoich aplikacjach bez konieczności zarządzania szczegółami niskiego poziomu formatu pliku.

Podsumowując, format obrazu PALM odegrał znaczącą rolę w erze komputerów osobistych Palm OS, zapewniając prosty i wydajny sposób obsługi grafiki na urządzeniach o ograniczonych zasobach. Chociaż został prześcignięty przez bardziej zaawansowane formaty obrazu we współczesnym krajobrazie technologicznym, zrozumienie formatu PALM daje wgląd w kwestie projektowe i ograniczenia wcześniejszych platform komputerowych. Dla osób zajmujących się starszymi aplikacjami lub urządzeniami Palm OS, znajomość formatu PALM pozostaje istotna dla utrzymania i konwersji starych zasobów obrazu.

Obsługiwane formaty

AAI.aai

Obraz AAI Dune

AI.ai

Adobe Illustrator CS2

AVIF.avif

Format plików obrazów AV1

BAYER.bayer

Surowy obraz Bayera

BMP.bmp

Obraz bitmapy Microsoft Windows

CIN.cin

Plik obrazu Cineon

CLIP.clip

Maska klipu obrazu

CMYK.cmyk

Surowe próbki cyjanu, magenty, żółtego i czarnego

CUR.cur

Ikona Microsoftu

DCX.dcx

ZSoft IBM PC wielostronicowy Paintbrush

DDS.dds

Powierzchnia DirectDraw Microsoftu

DPX.dpx

Obraz SMTPE 268M-2003 (DPX 2.0)

DXT1.dxt1

Powierzchnia DirectDraw Microsoftu

EPDF.epdf

Załączony format dokumentu przenośnego

EPI.epi

Format wymiany Adobe Encapsulated PostScript

EPS.eps

Adobe Encapsulated PostScript

EPSF.epsf

Adobe Encapsulated PostScript

EPSI.epsi

Format wymiany Adobe Encapsulated PostScript

EPT.ept

Encapsulated PostScript z podglądem TIFF

EPT2.ept2

Encapsulated PostScript Level II z podglądem TIFF

EXR.exr

Obraz o wysokim zakresie dynamiki (HDR)

FF.ff

Farbfeld

FITS.fits

Elastyczny system transportu obrazów

GIF.gif

Format wymiany grafiki CompuServe

HDR.hdr

Obraz o wysokim zakresie dynamiki

HEIC.heic

Kontener obrazu wysokiej wydajności

HRZ.hrz

Slow Scan TeleVision

ICO.ico

Ikona Microsoftu

ICON.icon

Ikona Microsoftu

J2C.j2c

Strumień kodu JPEG-2000

J2K.j2k

Strumień kodu JPEG-2000

JNG.jng

Grafika sieciowa JPEG

JP2.jp2

Składnia formatu plików JPEG-2000

JPE.jpe

Format JFIF Joint Photographic Experts Group

JPEG.jpeg

Format JFIF Joint Photographic Experts Group

JPG.jpg

Format JFIF Joint Photographic Experts Group

JPM.jpm

Składnia formatu plików JPEG-2000

JPS.jps

Format JPS Joint Photographic Experts Group

JPT.jpt

Składnia formatu plików JPEG-2000

JXL.jxl

Obraz JPEG XL

MAP.map

Baza danych obrazów wielorozdzielczościowych (MrSID)

MAT.mat

Format obrazu MATLAB level 5

PAL.pal

Pikselmapa Palm

PALM.palm

Pikselmapa Palm

PAM.pam

Powszechny format bitmapy 2-wymiarowej

PBM.pbm

Przenośny format bitmapy (czarno-biały)

PCD.pcd

Photo CD

PCT.pct

Apple Macintosh QuickDraw/PICT

PCX.pcx

ZSoft IBM PC Paintbrush

PDB.pdb

Format ImageViewer bazy danych Palm

PDF.pdf

Przenośny format dokumentu

PDFA.pdfa

Format archiwum przenośnego dokumentu

PFM.pfm

Przenośny format float

PGM.pgm

Przenośny format szarej mapy (szarej skali)

PGX.pgx

Nieskompresowany format JPEG 2000

PICT.pict

Apple Macintosh QuickDraw/PICT

PJPEG.pjpeg

Format JFIF Grupy Ekspertów Fotografii Wspólnych

PNG.png

Przenośna grafika sieciowa

PNG00.png00

PNG dziedziczący głębię bitów, typ koloru z oryginalnego obrazu

PNG24.png24

Nieprzezroczysty lub binarnie przezroczysty 24-bitowy RGB (zlib 1.2.11)

PNG32.png32

Nieprzezroczysty lub binarnie przezroczysty 32-bitowy RGBA

PNG48.png48

Nieprzezroczysty lub binarnie przezroczysty 48-bitowy RGB

PNG64.png64

Nieprzezroczysty lub binarnie przezroczysty 64-bitowy RGBA

PNG8.png8

Nieprzezroczysty lub binarnie przezroczysty 8-bitowy indeksowany

PNM.pnm

Przenośna dowolna mapa

PPM.ppm

Przenośny format pikselmapy (kolor)

PS.ps

Plik Adobe PostScript

PSB.psb

Duży format dokumentu Adobe

PSD.psd

Bitmapa Adobe Photoshop

RGB.rgb

Surowe próbki czerwieni, zieleni i niebieskiego

RGBA.rgba

Surowe próbki czerwieni, zieleni, niebieskiego i alfa

RGBO.rgbo

Surowe próbki czerwieni, zieleni, niebieskiego i krycia

SIX.six

Format grafiki DEC SIXEL

SUN.sun

Rasterfile Sun

SVG.svg

Skalowalna grafika wektorowa

TIFF.tiff

Format pliku obrazu z tagami

VDA.vda

Obraz Truevision Targa

VIPS.vips

Obraz VIPS

WBMP.wbmp

Obraz bitmapy bezprzewodowej (poziom 0)

WEBP.webp

Format obrazu WebP

YUV.yuv

CCIR 601 4:1:1 lub 4:2:2

Często zadawane pytania

Jak to działa?

Ten konwerter działa w całości w Twojej przeglądarce. Po wybraniu pliku jest on wczytywany do pamięci i konwertowany do wybranego formatu. Następnie możesz pobrać przekonwertowany plik.

Ile czasu zajmuje konwersja pliku?

Konwersje rozpoczynają się natychmiast, a większość plików jest konwertowana w mniej niż sekundę. Większe pliki mogą zająć więcej czasu.

Co dzieje się z moimi plikami?

Twoje pliki nigdy nie są przesyłane na nasze serwery. Są one konwertowane w Twojej przeglądarce, a następnie pobierany jest przekonwertowany plik. Nigdy nie widzimy Twoich plików.

Jakie typy plików mogę konwertować?

Obsługujemy konwersję między wszystkimi formatami obrazów, w tym JPEG, PNG, GIF, WebP, SVG, BMP, TIFF i innymi.

Ile to kosztuje?

Ten konwerter jest całkowicie darmowy i zawsze będzie darmowy. Ponieważ działa w Twojej przeglądarce, nie musimy płacić za serwery, więc nie musimy pobierać od Ciebie opłat.

Czy mogę konwertować wiele plików jednocześnie?

Tak! Możesz konwertować dowolną liczbę plików jednocześnie. Wystarczy wybrać wiele plików podczas ich dodawania.