EXIF (Exchangeable Image File Format) to blok metadanych, takich jak ekspozycja, obiektyw, znaczniki czasu, a nawet dane GPS, które aparaty i telefony osadzają w plikach graficznych. Wykorzystuje do tego system tagów w stylu TIFF, spakowany w formatach takich jak JPEG i TIFF. Jest to niezbędne do wyszukiwania, sortowania i automatyzacji w bibliotekach zdjęć, ale nieostrożne udostępnianie może prowadzić do niezamierzonego wycieku danych (ExifTool i Exiv2 ułatwiają inspekcję).
Na niskim poziomie EXIF ponownie wykorzystuje strukturę katalogu plików obrazów (IFD) formatu TIFF, a w formacie JPEG znajduje się wewnątrz znacznika APP1 (0xFFE1), skutecznie zagnieżdżając mały plik TIFF w kontenerze JPEG (przegląd JFIF; portal specyfikacji CIPA). Oficjalna specyfikacja — CIPA DC-008 (EXIF), obecnie w wersji 3.x — dokumentuje układ IFD, typy tagów i ograniczenia (CIPA DC-008; podsumowanie specyfikacji). EXIF definiuje dedykowany pod-IFD dla danych GPS (tag 0x8825) oraz IFD interoperacyjności (0xA005) (tabele tagów Exif).
Szczegóły implementacji mają znaczenie. Typowe pliki JPEG zaczynają się od segmentu JFIF APP0, po którym następuje EXIF w APP1. Starsze czytniki oczekują w pierwszej kolejności JFIF, podczas gdy nowoczesne biblioteki bez problemu analizują oba formaty (uwagi dotyczące segmentu APP). W praktyce parsery czasami zakładają kolejność lub limity rozmiaru APP, których specyfikacja nie wymaga, dlatego autorzy narzędzi dokumentują specyficzne zachowania i przypadki brzegowe (przewodnik po metadanych Exiv2; dokumentacja ExifTool).
EXIF nie ogranicza się do formatów JPEG/TIFF. Ekosystem PNG ustandaryzował chunk eXIf do przenoszenia danych EXIF w plikach PNG (wsparcie dla tego rozwiązania rośnie, a kolejność chunków w stosunku do IDAT może mieć znaczenie w niektórych implementacjach). WebP, format oparty na RIFF, obsługuje EXIF, XMP i ICC w dedykowanych chunkach (kontener WebP RIFF; libwebp). Na platformach Apple Image I/O zachowuje dane EXIF podczas konwersji do formatu HEIC/HEIF, wraz z danymi XMP i informacjami o producencie (kCGImagePropertyExifDictionary).
Jeśli kiedykolwiek zastanawiałeś się, w jaki sposób aplikacje odczytują ustawienia aparatu, mapa tagów EXIF jest odpowiedzią: Make, Model,FNumber, ExposureTime, ISOSpeedRatings, FocalLength, MeteringMode i inne znajdują się w głównych oraz podrzędnych IFD EXIF (tagi Exif; tagi Exiv2). Apple udost ępnia je za pośrednictwem stałych Image I/O, takich jak ExifFNumber i GPSDictionary. Na Androidzie AndroidX ExifInterface odczytuje i zapisuje dane EXIF w formatach JPEG, PNG, WebP i HEIF.
Orientacja obrazu zasługuje na szczególną uwagę. Większość urządzeń przechowuje piksele w takiej postaci, w jakiej zostały zarejestrowane, i zapisuje tag informujący przeglądarki, jak je obrócić podczas wyświetlania. Jest to tag 274 (Orientation) z wartościami takimi jak 1 (normalna), 6 (90° zgodnie z ruchem wskazówek zegara), 3 (180°), 8 (270°). Niezastosowanie się do tego tagu lub jego nieprawidłowa aktualizacja prowadzi do obrócenia zdjęć, niedopasowania miniatur i błędów uczenia maszynowego w dalszych etapach przetwarzania (tag orientacji;praktyczny przewodnik). W procesach przetwarzania często stosuje się normalizację, fizycznie obracając piksele i ustawiając Orientation=1(ExifTool).
Rejestracja czasu jest trudniejsza, niż się wydaje. Historyczne tagi, takie jak DateTimeOriginal, nie zawierają informacji o strefie czasowej, co sprawia, że zdjęcia robione za granicą mogą być niejednoznacznie interpretowane. Nowsze tagi dodają informacje o strefie czasowej — np. OffsetTimeOriginal — dzięki czemu oprogramowanie może rejestrować DateTimeOriginal wraz z przesunięciem UTC (np. -07:00) w celu poprawnego porządkowania i geokorelacji (tagi OffsetTime*;przegląd tagów).
EXIF współistnieje, a czasem nakłada się, z metadanymi zdjęć IPTC (tytuły, twórcy, prawa, tematy) oraz XMP, opartym na RDF frameworkiem Adobe, znormalizowanym jako ISO 16684-1. W praktyce poprawnie zaimplementowane oprogramowanie uzgadnia dane EXIF utworzone przez aparat z danymi IPTC/XMP wprowadzonymi przez użytkownika, nie odrzucając żadnego z nich (wskazówki IPTC;LoC o XMP;LoC o EXIF).
Kwestie prywatności sprawiają, że EXIF staje się kontrowersyjny. Geotagi i numery seryjne urządzeń niejednokrotnie ujawniły wrażliwe lokalizacje. Sztandarowym przykładem jest zdjęcie Johna McAfee z 2012 roku opublikowane przez Vice, w którym współrzędne GPS z danych EXIF rzekomo ujawniły jego miejsce pobytu (Wired;The Guardian). Wiele platform społecznościowych usuwa większość danych EXIF podczas przesyłania, ale implementacje różnią się i zmieniają w czasie. Warto to zweryfikować, pobierając własne posty i sprawdzając je za pomocą odpowiedniego narzędzia (pomoc dotycząca multimediów na Twitterze;pomoc Facebooka;pomoc Instagrama).
Badacze bezpieczeństwa również uważnie obserwują parsery EXIF. Luki w powszechnie używanych bibliotekach (np. libexif) obejmowały przepełnienia bufora i odczyty poza zakresem pamięci, wywołane przez źle sformułowane tagi. Są one łatwe do spreparowania, ponieważ EXIF jest ustrukturyzowanym plikiem binarnym w przewidywalnym miejscu (porady;wyszukiwanie NVD). Należy regularnie aktualizować biblioteki metadanych i przetwarzać obrazy w środowisku izolowanym (piaskownicy), jeśli pochodzą z niezaufanych źródeł.
Używany świadomie, EXIF jest kluczowym elementem, który napędza katalogi zdjęć, procesy zarządzania prawami autorskimi i systemy wizji komputerowej. Używany naiwnie, staje się cyfrowym śladem, którego możesz nie chcieć zostawiać. Dobra wiadomość jest taka, że ekosystem — specyfikacje, interfejsy API systemu operacyjnego i narzędzia — daje Ci kontrolę, której potrzebujesz (CIPA EXIF;ExifTool;Exiv2;IPTC;XMP).
Dane EXIF (Exchangeable Image File Format) to zbiór metadanych dotyczących zdjęcia, takich jak ustawienia aparatu, data i czas wykonania, a nawet lokalizacja, jeśli włączony był GPS.
Większość przeglądarek i edytorów zdjęć (np. Adobe Photoshop, Przeglądarka fotografii systemu Windows) umożliwia wyświetlanie danych EXIF. Wystarczy otworzyć panel właściwości lub informacji o pliku.
Tak, dane EXIF można edytować za pomocą specjalistycznego oprogramowania, takiego jak Adobe Photoshop, Lightroom, lub łatwo dostępnych narzędzi online. Pozwalają one na modyfikację lub usunięcie określonych pól metadanych.
Tak. Jeśli GPS jest włączony, dane o lokalizacji zapisane w metadanych EXIF mogą ujawnić wrażliwe informacje geograficzne. Dlatego zaleca się usuwanie lub anonimizację tych danych przed udostępnieniem zdjęć.
Wiele programów pozwala na usunięcie danych EXIF. Proces ten jest często nazywany 'czyszczeniem' metadanych. Istnieją również narzędzia online, które oferują taką funkcjonalność.
Większość platform społecznościowych, takich jak Facebook, Instagram i Twitter, automatycznie usuwa dane EXIF z obrazów w celu ochrony prywatności użytkowników.
Dane EXIF mogą zawierać m.in. model aparatu, datę i czas wykonania zdjęcia, ogniskową, czas naświetlania, przysłonę, czułość ISO, balans bieli oraz lokalizację GPS.
Dla fotografów dane EXIF są cennym źródłem informacji o dokładnych ustawieniach użytych podczas robienia zdjęcia. Pomaga to w doskonaleniu technik i odtwarzaniu podobnych warunków w przyszłości.
Nie, tylko obrazy wykonane na urządzeniach obsługujących metadane EXIF, takich jak aparaty cyfrowe i smartfony, będą zawierać te dane.
Tak, dane EXIF są zgodne ze standardem określonym przez Japan Electronic Industries Development Association (JEIDA). Jednak niektórzy producenci mogą dodawać własne, dodatkowe informacje.
Format PBM (Portable Bitmap) jest jednym z najprostszych i najwcześniejszych formatów plików graficznych używanych do przechowywania obrazów monochromatycznych. Jest częścią pakietu Netpbm, który obejmuje również PGM (Portable GrayMap) dla obrazów w skali szarości i PPM (Portable PixMap) dla obrazów kolorowych. Format PBM został zaprojektowany tak, aby był niezwykle łatwy do odczytu i zapisu w programie oraz aby był jasny i jednoznaczny. Nie jest przeznaczony do samodzielnego użytku, lecz raczej jako najmniejszy wspólny mianownik do konwersji między różnymi formatami obrazów.
Format PBM obsługuje tylko obrazy czarno-białe (1-bitowe). Każdy piksel na obrazie jest reprezentowany przez pojedynczy bit – 0 dla bieli i 1 dla czerni. Prostota formatu sprawia, że jest łatwy do manipulowania za pomocą podstawowych narzędzi do edycji tekstu lub języków programowania bez potrzeby korzystania ze specjalistycznych bibliotek przetwarzania obrazu. Jednak ta prostota oznacza również, że pliki PBM mogą być większe niż bardziej zaawansowane formaty, takie jak JPEG lub PNG, które wykorzystują algorytmy kompresji w celu zmniejszenia rozmiaru pliku.
Istnieją dwie odmiany formatu PBM: format ASCII (zwykły), znany jako P1, oraz format binarny (surowy), znany jako P4. Format ASCII jest czytelny dla człowieka i można go utworzyć lub edytować za pomocą prostego edytora tekstu. Format binarny nie jest czytelny dla człowieka, ale jest bardziej oszczędny pod względem miejsca i szybszy do odczytu i zapisu dla programów. Pomimo różnic w przechowywaniu, oba formaty reprezentują ten sam typ danych obrazu i można je konwertować między sobą bez utraty informacji.
Struktura pliku PBM w formacie ASCII rozpoczyna się od dwubajtowego magicznego numeru, który identyfikuje typ pliku. Dla formatu PBM ASCII jest to „P1”. Po magicznym numerze znajduje się spacja (odstępy, znaki TAB, CR, LF), a następnie specyfikacja szerokości, która jest liczbą kolumn na obrazie, po której następuje więcej spacji, a następnie specyfikacja wysokości, która jest liczbą wierszy na obrazie. Po specyfikacji wysokości znajduje się więcej spacji, a następnie rozpoczynają się dane pikseli.
Dane pikseli w pliku ASCII PBM składają się z serii „0” i „1”, przy czym każde „0” reprezentuje biały piksel, a każde „1” reprezentuje czarny piksel. Piksele są ułożone w wierszach, przy czym każdy wiersz pikseli znajduje się w nowym wierszu. Spacje są dozwolone w dowolnym miejscu w danych pikseli, z wyjątkiem sekwencji dwuznakowej (nie są dozwolone między dwoma znakami sekwencji). Koniec pliku jest osiągany po odczytaniu szerokość*wysokość bitów.
Natomiast binarny format PBM zaczyna się od magicznego numeru „P4” zamiast „P1”. Po magicznym numerze format pliku jest taki sam jak w wersji ASCII, aż do momentu rozpoczęcia danych pikseli. Binarne dane pikseli są pakowane w bajty, przy czym najbardziej znaczący bit (MSB) każdego bajtu reprezentuje najbardziej wysunięty na lewo piksel, a każdy wiersz pikseli jest wypełniany w razie potrzeby, aby wypełnić ostatni bajt. Bity wypełnienia nie są istotne i ich wartości są ignorowane.
Format binarny jest bardziej oszczędny pod względem miejsca, ponieważ wykorzystuje pełny bajt do reprezentowania ośmiu pikseli, w przeciwieństwie do formatu ASCII, który wykorzystuje co najmniej osiem bajtów (jeden znak na piksel plus spacja). Jednak format binarny nie jest czytelny dla człowieka i wymaga programu, który rozumie format PBM, aby wyświetlić lub edytować obraz.
Tworzenie pliku PBM programowo jest stosunkowo proste. W języku programowania takim jak C można otworzyć plik w trybie zapisu, wyprowadzić odpowiedni magiczny numer, zapisać szerokość i wysokość jako liczby ASCII oddzielone spacją, a następnie wyprowadzić dane pikseli. W przypadku ASCII PBM dane pikseli można zapisać jako serię „0” i „1” z odpowiednimi podziałami wierszy. W przypadku binarnego PBM dane pikseli muszą być spakowane w bajty i zapisane do pliku w trybie binarnym.
Odczytywanie pliku PBM jest również proste. Program odczytuje magiczny numer, aby określić format, pomija spacje, odczytuje szerokość i wysokość, pomija więcej spacji, a następnie odczytuje dane pikseli. W przypadku ASCII PBM program może odczytywać znaki jeden po drugim i interpretować je jako wartości pikseli. W przypadku binarnego PBM program musi odczytywać bajty i rozpakowywać je na poszczególne bity, aby uzyskać wartości pikseli.
Format PBM nie obsługuje żadnej formy kompresji ani kodowania, co oznacza, że rozmiar pliku jest wprost proporcjonalny do liczby pikseli na obrazie. Może to skutkować bardzo dużymi plikami w przypadku obrazów o wysokiej rozdzielczości. Jednak prostota formatu sprawia, że jest idealny do nauki przetwarzania obrazu, do użytku w sytuacjach, gdy wierność obrazu jest ważniejsza niż rozmiar pliku, lub do użytku jako format pośredni w procesach konwersji obrazu.
Jedną z zalet formatu PBM jest jego prostota i łatwość manipulowania nim. Na przykład, aby odwrócić obraz PBM (zamienić wszystkie czarne piksele na białe i odwrotnie), można po prostu zastąpić wszystkie „0” na „1” i wszystkie „1” na „0” w danych pikseli. Można to zrobić za pomocą prostego skryptu lub programu do przetwarzania tekstu. Podobnie inne podstawowe operacje na obrazach, takie jak obracanie lub odbijanie lustrzane, można zaimplementować za pomocą prostych algorytmów.
Pomimo swojej prostoty format PBM nie jest szeroko stosowany do ogólnego przechowywania lub wymiany obrazów. Wynika to przede wszystkim z braku kompresji, co czyni go nieefektywnym do przechowywania dużych obrazów lub do użytku w Internecie, gdzie przepustowość może być problemem. Nowocześniejsze formaty, takie jak JPEG, PNG i GIF, oferują różne formy kompresji i są lepiej przystosowane do tych celów. Jednak format PBM jest nadal używany w niektórych kontekstach, szczególnie w przypadku prostych grafik w rozwoju oprogramowania oraz jako narzędzie dydaktyczne do nauki koncepcji przetwarzania obrazu.
Pakiet Netpbm, który obejmuje format PBM, zapewnia kolekcję narzędzi do manipulowania plikami PBM, PGM i PPM. Narzędzia te umożliwiają konwersję między formatami Netpbm a innymi popularnymi formatami obrazów, a także podstawowe operacje przetwarzania obrazu, takie jak skalowanie, przycinanie i manipulowanie kolorami. Pakiet jest zaprojektowany tak, aby był łatwo rozszerzalny, z prostym interfejsem do dodawania nowych funkcji.
Podsumowując, format obrazu PBM jest prostym, bez zbędnych dodatków formatem pliku do przechowywania monochromatycznych obrazów bitmapowych. Jego prostota sprawia, że jest łatwy do zrozumienia i manipulowania, co może być korzystne w celach edukacyjnych lub w przypadku prostych zadań przetwarzania obrazu. Chociaż nie nadaje się do wszystkich zastosowań ze względu na brak kompresji i wynikające z tego duże rozmiary plików, pozostaje użytecznym formatem w określonych kontekstach, w których jego zalety są najbardziej korzystne. Format PBM, wraz z resztą pakietu Netpbm, nadal jest cennym narzędziem dla osób pracujących z podstawowym przetwarzaniem obrazu i konwersją formatów.
Ten konwerter działa w całości w Twojej przeglądarce. Po wybraniu pliku jest on wczytywany do pamięci i konwertowany do wybranego formatu. Następnie możesz pobrać przekonwertowany plik.
Konwersje rozpoczynają się natychmiast, a większość plików jest konwertowana w mniej niż sekundę. Większe pliki mogą zająć więcej czasu.
Twoje pliki nigdy nie są przesyłane na nasze serwery. Są one konwertowane w Twojej przeglądarce, a następnie pobierany jest przekonwertowany plik. Nigdy nie widzimy Twoich plików.
Obsługujemy konwersję między wszystkimi formatami obrazów, w tym JPEG, PNG, GIF, WebP, SVG, BMP, TIFF i innymi.
Ten konwerter jest całkowicie darmowy i zawsze będzie darmowy. Ponieważ działa w Twojej przeglądarce, nie musimy płacić za serwery, więc nie musimy pobierać od Ciebie opłat.
Tak! Możesz konwertować dowolną liczbę plików jednocześnie. Wystarczy wybrać wiele plików podczas ich dodawania.