Zobacz metadane EXIF dla każdego zdjęcia HEIC

Nieograniczona liczba zdjęć. Rozmiar plików do 2,5 GB. Za darmo, na zawsze.

Prywatne i bezpieczne

Wszystko dzieje się w Twojej przeglądarce. Twoje pliki nigdy nie dotykają naszych serwerów.

Błyskawicznie

Bez przesyłania, bez czekania. Konwertuj w momencie upuszczenia pliku.

Rzeczywiście za darmo

Nie wymaga konta. Brak ukrytych kosztów. Brak sztuczek z rozmiarem pliku.

EXIF (Exchangeable Image File Format) to blok metadanych, takich jak ekspozycja, obiektyw, znaczniki czasu, a nawet dane GPS, które aparaty i telefony osadzają w plikach graficznych. Wykorzystuje do tego system tagów w stylu TIFF, spakowany w formatach takich jak JPEG i TIFF. Jest to niezbędne do wyszukiwania, sortowania i automatyzacji w bibliotekach zdjęć, ale nieostrożne udostępnianie może prowadzić do niezamierzonego wycieku danych (ExifTool i Exiv2 ułatwiają inspekcję).

Na niskim poziomie EXIF ponownie wykorzystuje strukturę katalogu plików obrazów (IFD) formatu TIFF, a w formacie JPEG znajduje się wewnątrz znacznika APP1 (0xFFE1), skutecznie zagnieżdżając mały plik TIFF w kontenerze JPEG (przegląd JFIF; portal specyfikacji CIPA). Oficjalna specyfikacja — CIPA DC-008 (EXIF), obecnie w wersji 3.x — dokumentuje układ IFD, typy tagów i ograniczenia (CIPA DC-008; podsumowanie specyfikacji). EXIF definiuje dedykowany pod-IFD dla danych GPS (tag 0x8825) oraz IFD interoperacyjności (0xA005) (tabele tagów Exif).

Szczegóły implementacji mają znaczenie. Typowe pliki JPEG zaczynają się od segmentu JFIF APP0, po którym następuje EXIF w APP1. Starsze czytniki oczekują w pierwszej kolejności JFIF, podczas gdy nowoczesne biblioteki bez problemu analizują oba formaty (uwagi dotyczące segmentu APP). W praktyce parsery czasami zakładają kolejność lub limity rozmiaru APP, których specyfikacja nie wymaga, dlatego autorzy narzędzi dokumentują specyficzne zachowania i przypadki brzegowe (przewodnik po metadanych Exiv2; dokumentacja ExifTool).

EXIF nie ogranicza się do formatów JPEG/TIFF. Ekosystem PNG ustandaryzował chunk eXIf do przenoszenia danych EXIF w plikach PNG (wsparcie dla tego rozwiązania rośnie, a kolejność chunków w stosunku do IDAT może mieć znaczenie w niektórych implementacjach). WebP, format oparty na RIFF, obsługuje EXIF, XMP i ICC w dedykowanych chunkach (kontener WebP RIFF; libwebp). Na platformach Apple Image I/O zachowuje dane EXIF podczas konwersji do formatu HEIC/HEIF, wraz z danymi XMP i informacjami o producencie (kCGImagePropertyExifDictionary).

Jeśli kiedykolwiek zastanawiałeś się, w jaki sposób aplikacje odczytują ustawienia aparatu, mapa tagów EXIF jest odpowiedzią: Make, Model,FNumber, ExposureTime, ISOSpeedRatings, FocalLength, MeteringMode i inne znajdują się w głównych oraz podrzędnych IFD EXIF (tagi Exif; tagi Exiv2). Apple udostępnia je za pośrednictwem stałych Image I/O, takich jak ExifFNumber i GPSDictionary. Na Androidzie AndroidX ExifInterface odczytuje i zapisuje dane EXIF w formatach JPEG, PNG, WebP i HEIF.

Orientacja, czas i inne pułapki

Orientacja obrazu zasługuje na szczególną uwagę. Większość urządzeń przechowuje piksele w takiej postaci, w jakiej zostały zarejestrowane, i zapisuje tag informujący przeglądarki, jak je obrócić podczas wyświetlania. Jest to tag 274 (Orientation) z wartościami takimi jak 1 (normalna), 6 (90° zgodnie z ruchem wskazówek zegara), 3 (180°), 8 (270°). Niezastosowanie się do tego tagu lub jego nieprawidłowa aktualizacja prowadzi do obrócenia zdjęć, niedopasowania miniatur i błędów uczenia maszynowego w dalszych etapach przetwarzania (tag orientacji;praktyczny przewodnik). W procesach przetwarzania często stosuje się normalizację, fizycznie obracając piksele i ustawiając Orientation=1(ExifTool).

Rejestracja czasu jest trudniejsza, niż się wydaje. Historyczne tagi, takie jak DateTimeOriginal, nie zawierają informacji o strefie czasowej, co sprawia, że zdjęcia robione za granicą mogą być niejednoznacznie interpretowane. Nowsze tagi dodają informacje o strefie czasowej — np. OffsetTimeOriginal — dzięki czemu oprogramowanie może rejestrować DateTimeOriginal wraz z przesunięciem UTC (np. -07:00) w celu poprawnego porządkowania i geokorelacji (tagi OffsetTime*;przegląd tagów).

EXIF kontra IPTC kontra XMP

EXIF współistnieje, a czasem nakłada się, z metadanymi zdjęć IPTC (tytuły, twórcy, prawa, tematy) oraz XMP, opartym na RDF frameworkiem Adobe, znormalizowanym jako ISO 16684-1. W praktyce poprawnie zaimplementowane oprogramowanie uzgadnia dane EXIF utworzone przez aparat z danymi IPTC/XMP wprowadzonymi przez użytkownika, nie odrzucając żadnego z nich (wskazówki IPTC;LoC o XMP;LoC o EXIF).

Prywatność i bezpieczeństwo

Kwestie prywatności sprawiają, że EXIF staje się kontrowersyjny. Geotagi i numery seryjne urządzeń niejednokrotnie ujawniły wrażliwe lokalizacje. Sztandarowym przykładem jest zdjęcie Johna McAfee z 2012 roku opublikowane przez Vice, w którym współrzędne GPS z danych EXIF rzekomo ujawniły jego miejsce pobytu (Wired;The Guardian). Wiele platform społecznościowych usuwa większość danych EXIF podczas przesyłania, ale implementacje różnią się i zmieniają w czasie. Warto to zweryfikować, pobierając własne posty i sprawdzając je za pomocą odpowiedniego narzędzia (pomoc dotycząca multimediów na Twitterze;pomoc Facebooka;pomoc Instagrama).

Badacze bezpieczeństwa również uważnie obserwują parsery EXIF. Luki w powszechnie używanych bibliotekach (np. libexif) obejmowały przepełnienia bufora i odczyty poza zakresem pamięci, wywołane przez źle sformułowane tagi. Są one łatwe do spreparowania, ponieważ EXIF jest ustrukturyzowanym plikiem binarnym w przewidywalnym miejscu (porady;wyszukiwanie NVD). Należy regularnie aktualizować biblioteki metadanych i przetwarzać obrazy w środowisku izolowanym (piaskownicy), jeśli pochodzą z niezaufanych źródeł.

Praktyczne wskazówki

  • Należy świadomie zarządzać informacjami o lokalizacji: wyłącz geotagowanie w aparacie, gdy jest to stosowne, lub usuń dane GPS podczas eksportu. Zachowaj prywatny oryginał, jeśli będziesz potrzebować tych danych później (ExifTool;Exiv2 CLI).
  • Normalizuj orientację i znaczniki czasu w procesach przetwarzania, idealnie zapisując fizyczny obrót i usuwając niejednoznaczne tagi (lub dodając OffsetTime*). (Orientacja;OffsetTime*).
  • Zachowaj metadane opisowe (prawa autorskie/prawa własności) poprzez mapowanie EXIF↔IPTC↔XMP zgodnie z aktualnymi wskazówkami IPTC i preferuj XMP dla bogatych, rozszerzalnych pól.
  • W przypadku formatów PNG/WebP/HEIF sprawdź, czy Twoje biblioteki faktycznie odczytują i zapisują dane w nowoczesnych lokalizacjach EXIF/XMP. Nie zakładaj, że działają one tak samo jak w przypadku JPEG (PNG eXIf;kontener WebP;Image I/O).
  • Aktualizuj zależności, ponieważ metadane są częstym celem ataków na parsery (porady dotyczące libexif).

Używany świadomie, EXIF jest kluczowym elementem, który napędza katalogi zdjęć, procesy zarządzania prawami autorskimi i systemy wizji komputerowej. Używany naiwnie, staje się cyfrowym śladem, którego możesz nie chcieć zostawiać. Dobra wiadomość jest taka, że ekosystem — specyfikacje, interfejsy API systemu operacyjnego i narzędzia — daje Ci kontrolę, której potrzebujesz (CIPA EXIF;ExifTool;Exiv2;IPTC;XMP).

Dalsza lektura i odniesienia

Często Zadawane Pytania

Czym są dane EXIF?

Dane EXIF (Exchangeable Image File Format) to zbiór metadanych dotyczących zdjęcia, takich jak ustawienia aparatu, data i czas wykonania, a nawet lokalizacja, jeśli włączony był GPS.

Jak mogę wyświetlić dane EXIF?

Większość przeglądarek i edytorów zdjęć (np. Adobe Photoshop, Przeglądarka fotografii systemu Windows) umożliwia wyświetlanie danych EXIF. Wystarczy otworzyć panel właściwości lub informacji o pliku.

Czy dane EXIF można edytować?

Tak, dane EXIF można edytować za pomocą specjalistycznego oprogramowania, takiego jak Adobe Photoshop, Lightroom, lub łatwo dostępnych narzędzi online. Pozwalają one na modyfikację lub usunięcie określonych pól metadanych.

Czy dane EXIF stwarzają zagrożenie dla prywatności?

Tak. Jeśli GPS jest włączony, dane o lokalizacji zapisane w metadanych EXIF mogą ujawnić wrażliwe informacje geograficzne. Dlatego zaleca się usuwanie lub anonimizację tych danych przed udostępnieniem zdjęć.

Jak mogę usunąć dane EXIF?

Wiele programów pozwala na usunięcie danych EXIF. Proces ten jest często nazywany 'czyszczeniem' metadanych. Istnieją również narzędzia online, które oferują taką funkcjonalność.

Czy portale społecznościowe zachowują dane EXIF?

Większość platform społecznościowych, takich jak Facebook, Instagram i Twitter, automatycznie usuwa dane EXIF z obrazów w celu ochrony prywatności użytkowników.

Jakie informacje zawierają dane EXIF?

Dane EXIF mogą zawierać m.in. model aparatu, datę i czas wykonania zdjęcia, ogniskową, czas naświetlania, przysłonę, czułość ISO, balans bieli oraz lokalizację GPS.

Dlaczego dane EXIF są przydatne dla fotografów?

Dla fotografów dane EXIF są cennym źródłem informacji o dokładnych ustawieniach użytych podczas robienia zdjęcia. Pomaga to w doskonaleniu technik i odtwarzaniu podobnych warunków w przyszłości.

Czy wszystkie obrazy zawierają dane EXIF?

Nie, tylko obrazy wykonane na urządzeniach obsługujących metadane EXIF, takich jak aparaty cyfrowe i smartfony, będą zawierać te dane.

Czy istnieje standardowy format dla danych EXIF?

Tak, dane EXIF są zgodne ze standardem określonym przez Japan Electronic Industries Development Association (JEIDA). Jednak niektórzy producenci mogą dodawać własne, dodatkowe informacje.

Jaki jest format HEIC?

Kontener obrazu wysokiej wydajności

Format obrazu HALD, choć nie jest szeroko rozpoznawany przez ogół społeczeństwa, odgrywa kluczową rolę w zaawansowanym przetwarzaniu obrazu i przepływach pracy związanych z gradacją kolorów. Jego podstawowa zasada polega na funkcjonowaniu jako neutralne odniesienie, które mapuje wszystkie możliwe wartości kolorów, które mogą być wyświetlane przez cyfrowy system obrazowania. To mapowanie jest osiągane poprzez unikalny wzór wizualny, który reprezentuje trójwymiarową przestrzeń kolorów w formacie dwuwymiarowym. Zasadniczo obraz HALD służy jako kompleksowa tabela wyszukiwania kolorów (LUT), umożliwiająca wydajną manipulację kolorami w szerokim zakresie zastosowań. Poprzez zastosowanie korekt do obrazu HALD, a następnie użycie zmodyfikowanego HALD jako LUT kolorów, profesjonaliści mogą osiągnąć spójne i przewidywalne transformacje kolorów w wielu obrazach lub filmach.

Pochodzenie nazwy „HALD” nie jest szeroko udokumentowane, co prowadzi do pewnej aury tajemnicy otaczającej jej powstanie. W praktyce format obrazu HALD reprezentuje ewolucję tabeli wyszukiwania kolorów (LUT), koncepcji, która odegrała kluczową rolę w gradacji kolorów i przetwarzaniu obrazu. W przeciwieństwie do tradycyjnych LUT, które są często ograniczone do określonego zakresu transformacji kolorów, obraz HALD zawiera reprezentację wszystkich możliwych transformacji kolorów w swojej siatce. To wyczerpujące ujęcie przestrzeni kolorów pozwala na niezrównany poziom kontroli i elastyczności w procesach gradacji kolorów.

Tworzenie obrazu HALD polega na wygenerowaniu wzoru, który zawiera każdy kolor w przestrzeni kolorów urządzenia co najmniej raz. Zazwyczaj osiąga się to poprzez podzielenie przestrzeni kolorów na siatkę, w której każda komórka reprezentuje unikalny kolor. Złożoność i rozmiar obrazu HALD mogą się różnić, ogólnie rosnąc wraz z precyzją wymaganej reprezentacji kolorów. Standardowy obraz HALD jest tworzony poprzez odwzorowanie trójwymiarowej przestrzeni kolorów (czerwony, zielony, niebieski) na dwuwymiarową płaszczyznę, organizując kolory w sposób, który może być łatwo przetwarzany przez oprogramowanie do edycji obrazu.

Praktyczne zastosowania obrazów HALD obejmują różne dziedziny, od filmu i fotografii po sztukę cyfrową i media drukowane. W postprodukcji filmów i wideo obrazy HALD są wykorzystywane do tworzenia LUT kolorów, które zapewniają spójność kolorów w różnych ujęciach lub scenach. Fotografowie wykorzystują obrazy HALD do stosowania spójnych profili kolorów do partii obrazów, co znacznie skraca czas wymagany na ręczną korekcję kolorów. W dziedzinie sztuki cyfrowej obrazy HALD ułatwiają tworzenie unikalnych profili kolorów, które można zastosować do cyfrowych płócien w celu zwiększenia ekspresji artystycznej.

Jedną z głównych zalet formatu obrazu HALD jest nieniszcząca natura korekt kolorów dokonywanych przy jego użyciu. Ponieważ transformacje kolorów są stosowane przy użyciu LUT pochodzącego z obrazu HALD, a nie bezpośrednio do oryginalnego obrazu, podstawowe dane oryginalnego obrazu pozostają niezmienione. Pozwala to na łatwe poprawki i eksperymentowanie z różnymi gradacjami kolorów bez uszczerbku dla jakości oryginalnego obrazu. Ponadto zastosowanie gradacji kolorów za pomocą LUT opartego na HALD jest często szybsze niż ręczna korekcja kolorów, usprawniając przepływ pracy postprodukcji.

Techniczne tworzenie obrazu HALD wymaga specjalistycznego oprogramowania zdolnego do generowania złożonej siatki reprezentującej przestrzeń kolorów. Proces ten rozpoczyna się od zdefiniowania wymiarów obrazu HALD, które określają zakres kolorów, które może reprezentować. Następnie przestrzeń kolorów jest dyskretyzowana na serię sześcianów, z których każdy odpowiada określonemu kolorowi. Te sześciany są spłaszczane do dwuwymiarowej siatki, tworząc obraz HALD. Precyzja reprezentacji kolorów w obrazie HALD jest wprost proporcjonalna do jego rozdzielczości, przy czym wyższe rozdzielczości umożliwiają bardziej szczegółową gradację kolorów.

Aby użyć obrazu HALD do gradacji kolorów, pierwszym krokiem jest zastosowanie pożądanych korekt kolorów do samego obrazu HALD. Można to zrobić za pomocą dowolnego standardowego oprogramowania do edycji obrazu, umożliwiając dostosowanie balansu kolorów, kontrastu, nasycenia i innych. Po dokonaniu korekt edytowany obraz HALD jest konwertowany do LUT. Ten LUT można następnie zastosować do innych obrazów lub materiałów wideo, replikując korekty kolorów we wszystkich materiałach wizualnych. Rezultatem jest spójna i zharmonizowana gradacja kolorów, która poprawia ogólną estetykę projektu.

Pomimo wielu zalet, należy wziąć pod uwagę pewne kwestie podczas pracy z obrazami HALD. Jakość i precyzja gradacji kolorów możliwej do osiągnięcia za pomocą obrazów HALD zależą od rozdzielczości samego obrazu HALD. Obrazy HALD o wyższej rozdzielczości umożliwiają bardziej szczegółową gradację kolorów, ale wymagają również większej mocy obliczeniowej i miejsca do przechowywania. Ponadto skuteczność LUT opartego na HALD w osiąganiu pożądanej gradacji kolorów może się różnić w zależności od profilu kolorów oryginalnej treści i warunków oświetleniowych, co wymaga dostosowań lub dostosowań obrazu HALD lub LUT.

Integracja obrazów HALD do cyfrowego przepływu pracy może znacznie zwiększyć wydajność i jakość procesów gradacji kolorów. Na przykład w produkcji filmowej utworzenie serii obrazów HALD dostosowanych do różnych warunków oświetleniowych i ustawień kamery może ułatwić szybką gradację kolorów w różnych scenach. W fotografii wygenerowanie obrazu HALD specyficznego dla profilu kolorów aparatu może usprawnić proces korekcji kolorów dla dużej partii zdjęć, zapewniając jednolitość i oszczędzając cenny czas. Co więcej, w kontekstach, w których dokładność kolorów jest najważniejsza, takich jak obrazowanie medyczne lub reprezentacja kolorów marki, obrazy HALD oferują narzędzie do osiągnięcia precyzyjnej kalibracji kolorów.

Potencjał obrazów HALD wykracza poza ich obecne zastosowania. W miarę wzrostu mocy obliczeniowej i rozwoju oprogramowania możliwości wykorzystania obrazów HALD w kreatywnych i technicznych przedsięwzięciach będą się rozszerzać. Przyszłe osiągnięcia mogą obejmować bardziej intuicyjne narzędzia programowe do generowania i edycji obrazów HALD, ulepszone algorytmy zapewniające dokładniejszą reprezentację kolorów oraz szersze zastosowanie w branżach, w których wierność kolorów ma kluczowe znaczenie. Ponadto integracja sztucznej inteligencji w przetwarzaniu obrazów HALD mogłaby zautomatyzować i udoskonalić proces gradacji kolorów, czyniąc go bardziej dostępnym zarówno dla początkujących, jak i profesjonalistów.

Jednak rozpowszechnienie technologii HALD niesie ze sobą również wyzwania, szczególnie w zakresie standaryzacji i interoperacyjności. W miarę jak różni producenci oprogramowania i sprzętu przyjmują technologię HALD, zapewnienie kompatybilności między platformami i urządzeniami staje się kluczowe. Bez standaryzowanych formatów i procedur tworzenia, edycji i stosowania obrazów HALD użytkownicy mogą mieć trudności z osiągnięciem spójnych rezultatów. Rozwiązanie tych wyzwań będzie wymagało współpracy między interesariuszami branży w celu ustanowienia wspólnych standardów, które ułatwią bezproblemowe wykorzystanie obrazów HALD w różnych zastosowaniach.

Kolejną znaczącą przeszkodą w powszechnym przyjęciu obrazów HALD jest edukacja i świadomość. Pomimo technicznych zalet oferowanych przez obrazy HALD, ich złożoność i specjalistyczna wiedza wymagana do ich skutecznego generowania i używania mogą być zniechęcające dla wielu potencjalnych użytkowników. Aby przezwyciężyć tę barierę, niezbędne jest opracowanie kompleksowych zasobów edukacyjnych i przyjaznych dla użytkownika interfejsów oprogramowania. Poprzez uproszczenie procesu pracy z obrazami HALD i zapewnienie jasnych, dostępnych wskazówek producenci i twórcy oprogramowania mogą poszerzyć atrakcyjność tego potężnego narzędzia.

Podsumowując, format obrazu HALD stanowi znaczący postęp w cyfrowym przetwarzaniu obrazu, oferując niezrównaną elastyczność i precyzję w gradacji kolorów. Jego zdolność do ujęcia całej przestrzeni kolorów w jednym, nieniszczą

Obsługiwane formaty

AAI.aai

Obraz AAI Dune

AI.ai

Adobe Illustrator CS2

AVIF.avif

Format plików obrazów AV1

BAYER.bayer

Surowy obraz Bayera

BMP.bmp

Obraz bitmapy Microsoft Windows

CIN.cin

Plik obrazu Cineon

CLIP.clip

Maska klipu obrazu

CMYK.cmyk

Surowe próbki cyjanu, magenty, żółtego i czarnego

CUR.cur

Ikona Microsoftu

DCX.dcx

ZSoft IBM PC wielostronicowy Paintbrush

DDS.dds

Powierzchnia DirectDraw Microsoftu

DPX.dpx

Obraz SMTPE 268M-2003 (DPX 2.0)

DXT1.dxt1

Powierzchnia DirectDraw Microsoftu

EPDF.epdf

Załączony format dokumentu przenośnego

EPI.epi

Format wymiany Adobe Encapsulated PostScript

EPS.eps

Adobe Encapsulated PostScript

EPSF.epsf

Adobe Encapsulated PostScript

EPSI.epsi

Format wymiany Adobe Encapsulated PostScript

EPT.ept

Encapsulated PostScript z podglądem TIFF

EPT2.ept2

Encapsulated PostScript Level II z podglądem TIFF

EXR.exr

Obraz o wysokim zakresie dynamiki (HDR)

FF.ff

Farbfeld

FITS.fits

Elastyczny system transportu obrazów

GIF.gif

Format wymiany grafiki CompuServe

HDR.hdr

Obraz o wysokim zakresie dynamiki

HEIC.heic

Kontener obrazu wysokiej wydajności

HRZ.hrz

Slow Scan TeleVision

ICO.ico

Ikona Microsoftu

ICON.icon

Ikona Microsoftu

J2C.j2c

Strumień kodu JPEG-2000

J2K.j2k

Strumień kodu JPEG-2000

JNG.jng

Grafika sieciowa JPEG

JP2.jp2

Składnia formatu plików JPEG-2000

JPE.jpe

Format JFIF Joint Photographic Experts Group

JPEG.jpeg

Format JFIF Joint Photographic Experts Group

JPG.jpg

Format JFIF Joint Photographic Experts Group

JPM.jpm

Składnia formatu plików JPEG-2000

JPS.jps

Format JPS Joint Photographic Experts Group

JPT.jpt

Składnia formatu plików JPEG-2000

JXL.jxl

Obraz JPEG XL

MAP.map

Baza danych obrazów wielorozdzielczościowych (MrSID)

MAT.mat

Format obrazu MATLAB level 5

PAL.pal

Pikselmapa Palm

PALM.palm

Pikselmapa Palm

PAM.pam

Powszechny format bitmapy 2-wymiarowej

PBM.pbm

Przenośny format bitmapy (czarno-biały)

PCD.pcd

Photo CD

PCT.pct

Apple Macintosh QuickDraw/PICT

PCX.pcx

ZSoft IBM PC Paintbrush

PDB.pdb

Format ImageViewer bazy danych Palm

PDF.pdf

Przenośny format dokumentu

PDFA.pdfa

Format archiwum przenośnego dokumentu

PFM.pfm

Przenośny format float

PGM.pgm

Przenośny format szarej mapy (szarej skali)

PGX.pgx

Nieskompresowany format JPEG 2000

PICT.pict

Apple Macintosh QuickDraw/PICT

PJPEG.pjpeg

Format JFIF Grupy Ekspertów Fotografii Wspólnych

PNG.png

Przenośna grafika sieciowa

PNG00.png00

PNG dziedziczący głębię bitów, typ koloru z oryginalnego obrazu

PNG24.png24

Nieprzezroczysty lub binarnie przezroczysty 24-bitowy RGB (zlib 1.2.11)

PNG32.png32

Nieprzezroczysty lub binarnie przezroczysty 32-bitowy RGBA

PNG48.png48

Nieprzezroczysty lub binarnie przezroczysty 48-bitowy RGB

PNG64.png64

Nieprzezroczysty lub binarnie przezroczysty 64-bitowy RGBA

PNG8.png8

Nieprzezroczysty lub binarnie przezroczysty 8-bitowy indeksowany

PNM.pnm

Przenośna dowolna mapa

PPM.ppm

Przenośny format pikselmapy (kolor)

PS.ps

Plik Adobe PostScript

PSB.psb

Duży format dokumentu Adobe

PSD.psd

Bitmapa Adobe Photoshop

RGB.rgb

Surowe próbki czerwieni, zieleni i niebieskiego

RGBA.rgba

Surowe próbki czerwieni, zieleni, niebieskiego i alfa

RGBO.rgbo

Surowe próbki czerwieni, zieleni, niebieskiego i krycia

SIX.six

Format grafiki DEC SIXEL

SUN.sun

Rasterfile Sun

SVG.svg

Skalowalna grafika wektorowa

TIFF.tiff

Format pliku obrazu z tagami

VDA.vda

Obraz Truevision Targa

VIPS.vips

Obraz VIPS

WBMP.wbmp

Obraz bitmapy bezprzewodowej (poziom 0)

WEBP.webp

Format obrazu WebP

YUV.yuv

CCIR 601 4:1:1 lub 4:2:2

Często zadawane pytania

Jak to działa?

Ten konwerter działa w całości w Twojej przeglądarce. Po wybraniu pliku jest on wczytywany do pamięci i konwertowany do wybranego formatu. Następnie możesz pobrać przekonwertowany plik.

Ile czasu zajmuje konwersja pliku?

Konwersje rozpoczynają się natychmiast, a większość plików jest konwertowana w mniej niż sekundę. Większe pliki mogą zająć więcej czasu.

Co dzieje się z moimi plikami?

Twoje pliki nigdy nie są przesyłane na nasze serwery. Są one konwertowane w Twojej przeglądarce, a następnie pobierany jest przekonwertowany plik. Nigdy nie widzimy Twoich plików.

Jakie typy plików mogę konwertować?

Obsługujemy konwersję między wszystkimi formatami obrazów, w tym JPEG, PNG, GIF, WebP, SVG, BMP, TIFF i innymi.

Ile to kosztuje?

Ten konwerter jest całkowicie darmowy i zawsze będzie darmowy. Ponieważ działa w Twojej przeglądarce, nie musimy płacić za serwery, więc nie musimy pobierać od Ciebie opłat.

Czy mogę konwertować wiele plików jednocześnie?

Tak! Możesz konwertować dowolną liczbę plików jednocześnie. Wystarczy wybrać wiele plików podczas ich dodawania.