EXIF (Exchangeable Image File Format) to blok metadanych, takich jak ekspozycja, obiektyw, znaczniki czasu, a nawet dane GPS, które aparaty i telefony osadzają w plikach graficznych. Wykorzystuje do tego system tagów w stylu TIFF, spakowany w formatach takich jak JPEG i TIFF. Jest to niezbędne do wyszukiwania, sortowania i automatyzacji w bibliotekach zdjęć, ale nieostrożne udostępnianie może prowadzić do niezamierzonego wycieku danych (ExifTool i Exiv2 ułatwiają inspekcję).
Na niskim poziomie EXIF ponownie wykorzystuje strukturę katalogu plików obrazów (IFD) formatu TIFF, a w formacie JPEG znajduje się wewnątrz znacznika APP1 (0xFFE1), skutecznie zagnieżdżając mały plik TIFF w kontenerze JPEG (przegląd JFIF; portal specyfikacji CIPA). Oficjalna specyfikacja — CIPA DC-008 (EXIF), obecnie w wersji 3.x — dokumentuje układ IFD, typy tagów i ograniczenia (CIPA DC-008; podsumowanie specyfikacji). EXIF definiuje dedykowany pod-IFD dla danych GPS (tag 0x8825) oraz IFD interoperacyjności (0xA005) (tabele tagów Exif).
Szczegóły implementacji mają znaczenie. Typowe pliki JPEG zaczynają się od segmentu JFIF APP0, po którym następuje EXIF w APP1. Starsze czytniki oczekują w pierwszej kolejności JFIF, podczas gdy nowoczesne biblioteki bez problemu analizują oba formaty (uwagi dotyczące segmentu APP). W praktyce parsery czasami zakładają kolejność lub limity rozmiaru APP, których specyfikacja nie wymaga, dlatego autorzy narzędzi dokumentują specyficzne zachowania i przypadki brzegowe (przewodnik po metadanych Exiv2; dokumentacja ExifTool).
EXIF nie ogranicza się do formatów JPEG/TIFF. Ekosystem PNG ustandaryzował chunk eXIf do przenoszenia danych EXIF w plikach PNG (wsparcie dla tego rozwiązania rośnie, a kolejność chunków w stosunku do IDAT może mieć znaczenie w niektórych implementacjach). WebP, format oparty na RIFF, obsługuje EXIF, XMP i ICC w dedykowanych chunkach (kontener WebP RIFF; libwebp). Na platformach Apple Image I/O zachowuje dane EXIF podczas konwersji do formatu HEIC/HEIF, wraz z danymi XMP i informacjami o producencie (kCGImagePropertyExifDictionary).
Jeśli kiedykolwiek zastanawiałeś się, w jaki sposób aplikacje odczytują ustawienia aparatu, mapa tagów EXIF jest odpowiedzią: Make, Model,FNumber, ExposureTime, ISOSpeedRatings, FocalLength, MeteringMode i inne znajdują się w głównych oraz podrzędnych IFD EXIF (tagi Exif; tagi Exiv2). Apple udost ępnia je za pośrednictwem stałych Image I/O, takich jak ExifFNumber i GPSDictionary. Na Androidzie AndroidX ExifInterface odczytuje i zapisuje dane EXIF w formatach JPEG, PNG, WebP i HEIF.
Orientacja obrazu zasługuje na szczególną uwagę. Większość urządzeń przechowuje piksele w takiej postaci, w jakiej zostały zarejestrowane, i zapisuje tag informujący przeglądarki, jak je obrócić podczas wyświetlania. Jest to tag 274 (Orientation) z wartościami takimi jak 1 (normalna), 6 (90° zgodnie z ruchem wskazówek zegara), 3 (180°), 8 (270°). Niezastosowanie się do tego tagu lub jego nieprawidłowa aktualizacja prowadzi do obrócenia zdjęć, niedopasowania miniatur i błędów uczenia maszynowego w dalszych etapach przetwarzania (tag orientacji;praktyczny przewodnik). W procesach przetwarzania często stosuje się normalizację, fizycznie obracając piksele i ustawiając Orientation=1(ExifTool).
Rejestracja czasu jest trudniejsza, niż się wydaje. Historyczne tagi, takie jak DateTimeOriginal, nie zawierają informacji o strefie czasowej, co sprawia, że zdjęcia robione za granicą mogą być niejednoznacznie interpretowane. Nowsze tagi dodają informacje o strefie czasowej — np. OffsetTimeOriginal — dzięki czemu oprogramowanie może rejestrować DateTimeOriginal wraz z przesunięciem UTC (np. -07:00) w celu poprawnego porządkowania i geokorelacji (tagi OffsetTime*;przegląd tagów).
EXIF współistnieje, a czasem nakłada się, z metadanymi zdjęć IPTC (tytuły, twórcy, prawa, tematy) oraz XMP, opartym na RDF frameworkiem Adobe, znormalizowanym jako ISO 16684-1. W praktyce poprawnie zaimplementowane oprogramowanie uzgadnia dane EXIF utworzone przez aparat z danymi IPTC/XMP wprowadzonymi przez użytkownika, nie odrzucając żadnego z nich (wskazówki IPTC;LoC o XMP;LoC o EXIF).
Kwestie prywatności sprawiają, że EXIF staje się kontrowersyjny. Geotagi i numery seryjne urządzeń niejednokrotnie ujawniły wrażliwe lokalizacje. Sztandarowym przykładem jest zdjęcie Johna McAfee z 2012 roku opublikowane przez Vice, w którym współrzędne GPS z danych EXIF rzekomo ujawniły jego miejsce pobytu (Wired;The Guardian). Wiele platform społecznościowych usuwa większość danych EXIF podczas przesyłania, ale implementacje różnią się i zmieniają w czasie. Warto to zweryfikować, pobierając własne posty i sprawdzając je za pomocą odpowiedniego narzędzia (pomoc dotycząca multimediów na Twitterze;pomoc Facebooka;pomoc Instagrama).
Badacze bezpieczeństwa również uważnie obserwują parsery EXIF. Luki w powszechnie używanych bibliotekach (np. libexif) obejmowały przepełnienia bufora i odczyty poza zakresem pamięci, wywołane przez źle sformułowane tagi. Są one łatwe do spreparowania, ponieważ EXIF jest ustrukturyzowanym plikiem binarnym w przewidywalnym miejscu (porady;wyszukiwanie NVD). Należy regularnie aktualizować biblioteki metadanych i przetwarzać obrazy w środowisku izolowanym (piaskownicy), jeśli pochodzą z niezaufanych źródeł.
Używany świadomie, EXIF jest kluczowym elementem, który napędza katalogi zdjęć, procesy zarządzania prawami autorskimi i systemy wizji komputerowej. Używany naiwnie, staje się cyfrowym śladem, którego możesz nie chcieć zostawiać. Dobra wiadomość jest taka, że ekosystem — specyfikacje, interfejsy API systemu operacyjnego i narzędzia — daje Ci kontrolę, której potrzebujesz (CIPA EXIF;ExifTool;Exiv2;IPTC;XMP).
Dane EXIF (Exchangeable Image File Format) to zbiór metadanych dotyczących zdjęcia, takich jak ustawienia aparatu, data i czas wykonania, a nawet lokalizacja, jeśli włączony był GPS.
Większość przeglądarek i edytorów zdjęć (np. Adobe Photoshop, Przeglądarka fotografii systemu Windows) umożliwia wyświetlanie danych EXIF. Wystarczy otworzyć panel właściwości lub informacji o pliku.
Tak, dane EXIF można edytować za pomocą specjalistycznego oprogramowania, takiego jak Adobe Photoshop, Lightroom, lub łatwo dostępnych narzędzi online. Pozwalają one na modyfikację lub usunięcie określonych pól metadanych.
Tak. Jeśli GPS jest włączony, dane o lokalizacji zapisane w metadanych EXIF mogą ujawnić wrażliwe informacje geograficzne. Dlatego zaleca się usuwanie lub anonimizację tych danych przed udostępnieniem zdjęć.
Wiele programów pozwala na usunięcie danych EXIF. Proces ten jest często nazywany 'czyszczeniem' metadanych. Istnieją również narzędzia online, które oferują taką funkcjonalność.
Większość platform społecznościowych, takich jak Facebook, Instagram i Twitter, automatycznie usuwa dane EXIF z obrazów w celu ochrony prywatności użytkowników.
Dane EXIF mogą zawierać m.in. model aparatu, datę i czas wykonania zdjęcia, ogniskową, czas naświetlania, przysłonę, czułość ISO, balans bieli oraz lokalizację GPS.
Dla fotografów dane EXIF są cennym źródłem informacji o dokładnych ustawieniach użytych podczas robienia zdjęcia. Pomaga to w doskonaleniu technik i odtwarzaniu podobnych warunków w przyszłości.
Nie, tylko obrazy wykonane na urządzeniach obsługujących metadane EXIF, takich jak aparaty cyfrowe i smartfony, będą zawierać te dane.
Tak, dane EXIF są zgodne ze standardem określonym przez Japan Electronic Industries Development Association (JEIDA). Jednak niektórzy producenci mogą dodawać własne, dodatkowe informacje.
Format obrazu PDB (Protein Data Bank) nie jest tradycyjnym formatem „obrazu”, takim jak JPEG czy PNG, lecz raczej formatem danych, który przechowuje trójwymiarowe informacje strukturalne o białkach, kwasach nukleinowych i złożonych zespołach. Format PDB jest kamieniem węgielnym bioinformatyki i biologii strukturalnej, ponieważ pozwala naukowcom wizualizować, udostępniać i analizować struktury molekularne biologicznych makromolekuł. Archiwum PDB jest zarządzane przez Worldwide Protein Data Bank (wwPDB), który zapewnia, że dane PDB są bezpłatnie i publicznie dostępne dla globalnej społeczności.
Format PDB został opracowany po raz pierwszy na początku lat 70. XX wieku, aby zaspokoić rosnące zapotrzebowanie na znormalizowaną metodę przedstawiania struktur molekularnych. Od tego czasu ewoluował, aby pomieścić szeroki zakres danych molekularnych. Format jest oparty na tekście i może być odczytywany przez ludzi, a także przetwarzany przez komputery. Składa się z serii rekordów, z których każdy zaczyna się od sześcioznakowego identyfikatora wiersza, który określa typ informacji zawartych w tym rekordzie. Rekordy zawierają szczegółowy opis struktury, w tym współrzędne atomowe, łączność i dane eksperymentalne.
Typowy plik PDB zaczyna się od sekcji nagłówka, która zawiera metadane dotyczące struktury białka lub kwasu nukleinowego. Ta sekcja zawiera rekordy takie jak TITLE, który zawiera krótki opis struktury; COMPND, który wymienia składniki chemiczne; i SOURCE, który opisuje pochodzenie cząsteczki biologicznej. Nagłówek zawiera również rekord AUTHOR, który zawiera nazwiska osób, które określiły strukturę, oraz rekord JOURNAL, który zawiera cytowanie literatury, w której struktura została opisana po raz pierwszy.
Po nagłówku plik PDB zawiera podstawowe informacje o sekwencji makromolekuły w rekordach SEQRES. Rekordy te zawierają sekwencję reszt (aminokwasy dla białek, nukleotydy dla kwasów nukleinowych) w takiej postaci, w jakiej występują w łańcuchu. Informacje te są kluczowe dla zrozumienia związku między sekwencją cząsteczki a jej trójwymiarową strukturą.
Rekordy ATOM są prawdopodobnie najważniejszą częścią pliku PDB, ponieważ zawierają współrzędne każdego atomu w cząsteczce. Każdy rekord ATOM zawiera numer seryjny atomu, nazwę atomu, nazwę reszty, identyfikator łańcucha, numer sekwencji reszty oraz współrzędne kartezjańskie x, y i z atomu w angstremach. Rekordy ATOM umożliwiają rekonstrukcję trójwymiarowej struktury cząsteczki, którą można wizualizować za pomocą specjalistycznego oprogramowania, takiego jak PyMOL, Chimera lub VMD.
Oprócz rekordów ATOM istnieją rekordy HETATM dla atomów, które są częścią niestandardowych reszt lub ligandów, takich jak jony metali, cząsteczki wody lub inne małe cząsteczki związane z białkiem lub kwasem nukleinowym. Rekordy te są sformatowane podobnie do rekordów ATOM, ale są wyróżnione, aby ułatwić identyfikację niemakromolekularnych składników w strukturze.
Informacje o łączności są zawarte w rekordach CONECT, które zawierają wiązania między atomami. Rekordy te nie są obowiązkowe, ponieważ większość oprogramowania do wizualizacji i analizy molekularnej może wnioskować o łączności na podstawie odległości między atomami. Są one jednak kluczowe dla definiowania nietypowych wiązań lub dla struktur z kompleksami koordynacyjnymi metali, w których wiązanie może nie być oczywiste z samych współrzędnych atomowych.
Format PDB zawiera również rekordy określające elementy struktury drugorzędowej, takie jak helisy alfa i arkusze beta. Rekordy HELIX i SHEET identyfikują te struktury i dostarczają informacji o ich położeniu w sekwencji. Informacje te pomagają w zrozumieniu wzorców fałdowania makromolekuły i są niezbędne do badań porównawczych i modelowania.
Dane eksperymentalne i metody użyte do określenia struktury są również udokumentowane w pliku PDB. Rekordy takie jak EXPDTA opisują technikę eksperymentalną (np. krystalografię rentgenowską, spektroskopię NMR), podczas gdy rekordy REMARK mogą zawierać szeroką gamę komentarzy i adnotacji dotyczących struktury, w tym szczegóły dotyczące zbierania danych, rozdzielczości i statystyk udoskonalenia.
Rekord END oznacza koniec pliku PDB. Ważne jest, aby zauważyć, że chociaż format PDB jest szeroko stosowany, ma pewne ograniczenia ze względu na swój wiek i stałą szerokość kolumny, co może prowadzić do problemów z nowoczesnymi strukturami, które mają dużą liczbę atomów lub wymagają większej precyzji. Aby rozwiązać te ograniczenia, opracowano zaktualizowany format o nazwie mmCIF (plik informacji krystalograficznych makromolekularnych), który oferuje bardziej elastyczną i rozszerzalną strukturę do reprezentowania struktur makromolekularnych.
Pomimo rozwoju formatu mmCIF, format PDB pozostaje popularny ze względu na swoją prostotę i dużą liczbę narzędzi programowych, które go obsługują. Badacze często konwertują między formatami PDB i mmCIF w zależności od swoich potrzeb i narzędzi, których używają. Długowieczność formatu PDB świadczy o jego fundamentalnej roli w dziedzinie biologii strukturalnej i jego skuteczności w przekazywaniu złożonych informacji strukturalnych w stosunkowo prosty sposób.
Aby pracować z plikami PDB, naukowcy używają różnych narzędzi obliczeniowych. Oprogramowanie do wizualizacji molekularnej pozwala użytkownikom ładować pliki PDB i oglądać struktury w trzech wymiarach, obracać je, powiększać i pomniejszać oraz stosować różne style renderowania, aby lepiej zrozumieć przestrzenny układ atomów. Narzędzia te często zapewniają dodatkowe funkcje, takie jak pomiar odległości, kątów i dihedrów, symulowanie dynamiki molekularnej oraz analizowanie interakcji w strukturze lub z potencjalnymi ligandami.
Format PDB odgrywa również kluczową rolę w biologii obliczeniowej i odkrywaniu leków. Informacje strukturalne z plików PDB są wykorzystywane w modelowaniu homologicznym, w którym znana struktura pokrewnego białka jest używana do przewidywania struktury białka będącego przedmiotem zainteresowania. W projektowaniu leków opartym na strukturze pliki PDB białek docelowych są używane do przesiewania i optymalizacji potencjalnych związków leków, które następnie można syntetyzować i testować w laboratorium.
Wpływ formatu PDB wykracza poza indywidualne projekty badawcze. Sam Protein Data Bank jest repozytorium, które obecnie zawiera ponad 150 000 struktur i stale rośnie w miarę określania i deponowania nowych struktur. Ta baza danych jest nieocenionym źródłem do edukacji, pozwalając studentom eksplorować i poznawać struktury biologicznych makromolekuł. Służy również jako historyczny zapis postępu w biologii strukturalnej w ciągu ostatnich dziesięcioleci.
Podsumowując, format obrazu PDB jest kluczowym narzędziem w dziedzinie biologii strukturalnej, zapewniającym sposób przechowywania, udostępniania i analizowania trójwymiarowych struktur biologicznych makromolekuł. Chociaż ma pewne ograniczenia, jego szerokie przyjęcie i rozwój bogatego ekosystemu narzędzi do jego użytku zapewniają, że pozostanie kluczowym formatem w przewidywalnej przyszłości. W miarę rozwoju dziedziny biologii strukturalnej format PDB prawdopodobnie zostanie uzupełniony o bardziej zaawansowane formaty, takie jak mmCIF, ale jego spuścizna przetrwa jako fundament, na którym zbudowana jest współczesna biologia strukturalna.
Ten konwerter działa w całości w Twojej przeglądarce. Po wybraniu pliku jest on wczytywany do pamięci i konwertowany do wybranego formatu. Następnie możesz pobrać przekonwertowany plik.
Konwersje rozpoczynają się natychmiast, a większość plików jest konwertowana w mniej niż sekundę. Większe pliki mogą zająć więcej czasu.
Twoje pliki nigdy nie są przesyłane na nasze serwery. Są one konwertowane w Twojej przeglądarce, a następnie pobierany jest przekonwertowany plik. Nigdy nie widzimy Twoich plików.
Obsługujemy konwersję między wszystkimi formatami obrazów, w tym JPEG, PNG, GIF, WebP, SVG, BMP, TIFF i innymi.
Ten konwerter jest całkowicie darmowy i zawsze będzie darmowy. Ponieważ działa w Twojej przeglądarce, nie musimy płacić za serwery, więc nie musimy pobierać od Ciebie opłat.
Tak! Możesz konwertować dowolną liczbę plików jednocześnie. Wystarczy wybrać wiele plików podczas ich dodawania.