OCR für jedes PALM
Ziehen und ablegen oder klicken, um auszuwählen
Privat und sicher
Alles passiert in Ihrem Browser. Ihre Dateien berühren niemals unsere Server.
Blitzschnell
Kein Hochladen, kein Warten. Konvertieren Sie, sobald Sie eine Datei ablegen.
Wirklich kostenlos
Kein Konto erforderlich. Keine versteckten Kosten. Keine Tricks bei der Dateigröße.
Optische Zeichenerkennung (OCR) wandelt Bilder von Text – Scans, Smartphone-Fotos, PDFs – in maschinenlesbare Zeichenketten und zunehmend in strukturierte Daten um. Moderne OCR ist eine Pipeline, die ein Bild bereinigt, Text findet, ihn liest und umfassende Metadaten exportiert, damit nachgelagerte Systeme Felder suchen, indizieren oder extrahieren können. Zwei weit verbreitete Ausgabestandards sind hOCR, ein HTML-Mikroformat für Text und Layout, und ALTO XML, ein auf Bibliotheken/Archive ausgerichtetes Schema; beide erhalten Positionen, Lesereihenfolge und andere Layout-Hinweise und werden von populären Engines wie Tesseractunterstützt.
Eine kurze Tour durch die Pipeline
Vorverarbeitung. Die OCR-Qualität beginnt mit der Bildbereinigung: Graustufenumwandlung, Entrauschen, Schwellenwertbildung (Binarisierung) und Schräglagenkorrektur. Kanonische OpenCV-Tutorials behandeln globale, adaptive und Otsu Schwellenwertbildung – unerlässlich für Dokumente mit ungleichmäßiger Beleuchtung oder bimodalen Histogrammen. Wenn die Beleuchtung innerhalb einer Seite variiert (denken Sie an Handy-Schnappschüsse), übertreffen adaptive Methoden oft einen einzigen globalen Schwellenwert; Otsu wählt automatisch einen Schwellenwert durch Analyse des Histogramms. Die Neigungskorrektur ist ebenso wichtig: Hough-basierte Schräglagenkorrektur (Hough-Linientransformation) in Verbindung mit Otsu-Binarisierung ist ein gängiges und effektives Rezept in Produktions-Vorverarbeitungspipelines.
Erkennung vs. Erkennung. OCR wird typischerweise in Texterkennung (wo ist der Text?) und Texterkennung (was steht da?) unterteilt. In natürlichen Szenen und vielen Scans sind vollständig konvolutionale Detektoren wie EAST effizient bei der Vorhersage von Vierecken auf Wort- oder Zeilenebene ohne aufwändige Vorschlagsphasen und sind in gängigen Toolkits implementiert (z. B. OpenCVs Tutorial zur Texterkennung). Bei komplexen Seiten (Zeitungen, Formulare, Bücher) sind die Segmentierung von Zeilen/Regionen und die Inferenz der Lesereihenfolge von Bedeutung:Kraken implementiert traditionelle Zonen-/Zeilensegmentierung und neuronale Grundlinien-Segmentierung, mit expliziter Unterstützung für verschiedene Schriften und Richtungen (LTR/RTL/vertikal).
Erkennungsmodelle. Das klassische Open-Source-Arbeitspferd Tesseract (von Google als Open Source veröffentlicht, mit Wurzeln bei HP) entwickelte sich von einem Zeichenklassifikator zu einem LSTM-basierten Sequenz- Erkenner und kann durchsuchbare PDFs, hOCR/ALTO-freundliche Ausgabenund mehr über die CLI ausgeben. Moderne Erkenner setzen auf Sequenzmodellierung ohne vorsegmentierte Zeichen. Connectionist Temporal Classification (CTC) bleibt grundlegend und lernt die Ausrichtungen zwischen Eingabemerkmalfolgen und Ausgabezeichenfolgen; es wird häufig in Handschrift- und Szenentext-Pipelines verwendet.
In den letzten Jahren haben Transformer die OCR neu gestaltet. TrOCR verwendet einen Vision-Transformer-Encoder plus einen Text-Transformer-Decoder, trainiert auf großen synthetischen Korpora und dann feinabgestimmt auf realen Daten, mit starker Leistung bei gedruckten, handschriftlichen und Szenentext-Benchmarks (siehe auch Hugging Face-Dokumentation). Parallel dazu umgehen einige Systeme OCR für das nachgelagerte Verständnis: Donut (Document Understanding Transformer) ist ein OCR-freier Encoder-Decoder, der direkt strukturierte Antworten (wie Schlüssel-Wert-JSON) aus Dokumenten- bildern ausgibt (Repo, Modellkarte), um Fehlerakkumulation zu vermeiden, wenn ein separater OCR-Schritt ein IE-System speist.
Engines und Bibliotheken
Wenn Sie eine umfassende Texterkennung für viele Schriften wünschen, bietet EasyOCR eine einfache API mit über 80 Sprachmodellen, die Boxen, Text und Konfidenzen zurückgibt – praktisch für Prototypen und nicht-lateinische Schriften. Für historische Dokumente glänzt Kraken mit Grundliniensegmentierung und schriftbewusster Lesereihenfolge; für flexibles Training auf Zeilenebene, Calamari baut auf der Ocropy-Linie auf (Ocropy) mit (Multi-)LSTM+CTC-Erkennern und einer CLI zur Feinabstimmung benutzerdefinierter Modelle.
Datensätze und Benchmarks
Generalisierung hängt von Daten ab. Für Handschrift bietet die IAM Handwriting Database schreiberdiverse englische Sätze für Training und Evaluierung; sie ist ein langjähriger Referenzdatensatz für Zeilen- und Worterkennung. Für Szenentext hat COCO-Text umfangreiche Annotationen über MS-COCO gelegt, mit Labels für gedruckt/handschriftlich, lesbar/unlesbar, Schrift und vollständigen Transkriptionen (siehe auch die ursprüngliche Projektseite). Das Feld stützt sich auch stark auf synthetisches Vortraining: SynthText in the Wild rendert Text in Fotografien mit realistischer Geometrie und Beleuchtung und liefert riesige Datenmengen zum Vortrainieren von Detektoren und Erkennern (Referenz Code & Daten).
Wettbewerbe unter dem Dach von ICDARs Robust Reading halten die Evaluierung auf dem Boden. Jüngste Aufgaben betonen die End-to-End-Erkennung/Lesung und umfassen das Verknüpfen von Wörtern zu Phrasen, wobei der offizielle Code Präzision/Recall/F-Score, Intersection-over-Union (IoU) und zeichenbasierte Edit-Distanz-Metriken meldet – was widerspiegelt, was Praktiker verfolgen sollten.
Ausgabeformate und nachgelagerte Nutzung
OCR endet selten bei reinem Text. Archive und digitale Bibliotheken bevorzugen ALTO XML , da es das physische Layout (Blöcke/Zeilen/Wörter mit Koordinaten) neben dem Inhalt kodiert und gut mit METS-Verpackungen harmoniert. Das hOCR Mikroformat hingegen bettet dieselbe Idee in HTML/CSS ein, indem es Klassen wie ocr_line und ocrx_word verwendet, was die Anzeige, Bearbeitung und Transformation mit Web-Werkzeugen erleichtert. Tesseract bietet beides – z. B. die Erzeugung von hOCR oder durchsuchbaren PDFs direkt über die CLI (PDF-Ausgabe-Anleitung); Python-Wrapper wie pytesseract bieten zusätzlichen Komfort. Es gibt Konverter, um zwischen hOCR und ALTO zu übersetzen, wenn Repositories feste Aufnahme- standards haben – siehe diese kuratierte Liste von OCR-Dateiformat-Tools.
Praktische Anleitung
- Beginnen Sie mit Daten & Sauberkeit. Wenn Ihre Bilder Handyfotos oder Scans gemischter Qualität sind, investieren Sie in Schwellenwertbildung (adaptiv & Otsu) und Schräglagenkorrektur (Hough) vor jeder Modellabstimmung. Sie werden oft mehr von einem robusten Vorverarbeitungsrezept profitieren als vom Austausch von Erkennern.
- Wählen Sie den richtigen Detektor. Für gescannte Seiten mit regelmäßigen Spalten kann ein Seitensegmentierer (Zonen → Zeilen) ausreichen; für natürliche Bilder sind Single-Shot-Detektoren wie EAST starke Baselines und lassen sich in viele Toolkits integrieren (OpenCV-Beispiel).
- Wählen Sie einen Erkenner, der zu Ihrem Text passt. Für gedrucktes Latein ist Tesseract (LSTM/OEM) robust und schnell; für Multi-Skript oder schnelle Prototypen ist EasyOCR produktiv; für Handschrift oder historische Schriftarten sollten Sie Kraken oder Calamari in Betracht ziehen und eine Feinabstimmung planen. Wenn Sie eine enge Kopplung an das Dokumentenverständnis benötigen (Schlüssel-Wert-Extraktion, VQA), evaluieren Sie TrOCR (OCR) versus Donut (OCR-frei) auf Ihrem Schema – Donut kann einen ganzen Integrationsschritt entfernen.
- Messen Sie, was zählt. Für End-to-End-Systeme melden Sie Erkennungs- F-Score und Erkennungs-CER/WER (beide basierend auf Levenshtein- Edit-Distanz; siehe CTC); für layoutlastige Aufgaben verfolgen Sie IoU/Dichtheit und zeichenbasierte normalisierte Edit-Distanz wie in ICDAR RRC Evaluierungskits.
- Exportieren Sie reichhaltige Ausgaben. Bevorzugen Sie hOCR /ALTO (oder beides), damit Sie Koordinaten und Lesereihenfolge beibehalten – entscheidend für die Hervorhebung von Suchtreffern, Tabellen-/Feld- extraktion und Provenienz. Tesseracts CLI und pytesseract machen dies zu einem Einzeiler.
Blick nach vorn
Der stärkste Trend ist die Konvergenz: Erkennung, Erkennung, Sprachmodellierung und sogar aufgabenspezifische Dekodierung verschmelzen zu einheitlichen Transformer-Stacks. Vortraining auf großen synthetischen Korpora bleibt ein Kraftmultiplikator. OCR-freie Modelle werden aggressiv konkurrieren, wo immer das Ziel strukturierte Ausgaben anstelle von wörtlichen Transkripten sind. Erwarten Sie auch hybride Bereitstellungen: einen leichtgewichtigen Detektor plus einen TrOCR-Stil- Erkenner für Langformtext und ein Donut-Stil-Modell für Formulare und Belege.
Weiterführende Literatur & Tools
Tesseract (GitHub) · Tesseract-Dokumentation · hOCR-Spezifikation · ALTO-Hintergrund · EAST-Detektor · OpenCV-Texterkennung · TrOCR · Donut · COCO-Text · SynthText · Kraken · Calamari OCR · ICDAR RRC · pytesseract · IAM Handschrift · OCR-Dateiformat-Tools · EasyOCR
Häufig gestellte Fragen
Was ist OCR?
Die Optical Character Recognition (OCR) ist eine Technologie, die verwendet wird, um verschiedene Arten von Dokumenten, wie gescannte Papiere, PDF-Dateien oder Bilder, die mit einer Digitalkamera aufgenommen wurden, in bearbeitbare und durchsuchbare Daten umzuwandeln.
Wie funktioniert OCR?
OCR funktioniert, indem es ein Eingabebild oder Dokument scannt, das Bild in einzelne Zeichen segmentiert und jedes Zeichen mit einer Datenbank von Zeichenformen mit Hilfe von Mustererkennung oder Feature-Erkennung vergleicht.
Welches sind einige praktische Anwendungen von OCR?
OCR wird in einer Vielzahl von Bereichen und Anwendungen genutzt, einschließlich der Digitalisierung von gedruckten Dokumenten, der Aktivierung von Text-zu-Sprachdiensten, der Automatisierung von Dateneingabeprozessen und der Unterstützung von sehbehinderten Benutzern bei der Interaktion mit Texten.
Ist OCR immer 100% genau?
Obwohl große Fortschritte in der OCR-Technologie gemacht wurden, ist sie nicht unfehlbar. Die Genauigkeit kann abhängig von der Qualität des Originaldokuments und den Spezifika der verwendeten OCR-Software variieren.
Kann OCR Handschrift erkennen?
Obwohl OCR hauptsächlich für gedruckten Text konzipiert wurde, können einige fortschrittliche OCR-Systeme auch klare und konsistente Handschriften erkennen. Allerdings ist die Handschriftenerkennung in der Regel weniger genau aufgrund der großen Variation in individuellen Schreibstilen.
Kann OCR mehrere Sprachen verarbeiten?
Ja, viele OCR-Software-Systeme können mehrere Sprachen erkennen. Es ist jedoch wichtig zu gewährleisten, dass die spezifische Sprache von der von Ihnen verwendeten Software unterstützt wird.
Was ist der Unterschied zwischen OCR und ICR?
OCR steht für Optical Character Recognition und wird verwendet, um gedruckten Text zu erkennen, während ICR für Intelligent Character Recognition steht und wird zur Fortschrittlicheren Erkennung von handschriftlichen Text verwendet.
Funktioniert OCR mit jeder Schrift- und Textgröße?
OCR funktioniert am besten mit klaren, leicht lesbaren Schriftarten und Standard-Textgrößen. Obwohl es mit verschiedenen Schriftarten und Größen arbeiten kann, neigt die Genauigkeit dazu, zu sinken, wenn man mit ungewöhnlichen Schriftarten oder sehr kleinen Textgrößen umgeht.
Was sind die Grenzen der OCR-Technologie?
OCR kann Probleme haben mit niedrigauflösenden Dokumenten, komplexen Schriftarten, schlecht gedruckten Texten, Handschriften und Dokumenten mit Hintergründen, die den Text stören. Außerdem kann es, obwohl es mit vielen Sprachen arbeiten kann, nicht jede Sprache perfekt abdecken.
Kann OCR farbigen Text oder farbige Hintergründe scannen?
Ja, OCR kann farbigen Text und Hintergründe scannen, obwohl es in der Regel effektiver mit Hochkontrast-Farbkombinationen ist, wie schwarzem Text auf weißem Hintergrund. Die Genauigkeit kann abnehmen, wenn Text und Hintergrundfarben nicht genug Kontrast aufweisen.
Was ist das PALM Format?
Palm-Pixmap
Das PALM-Bildformat, auch bekannt als Palm Bitmap, ist ein Rastergrafik-Dateiformat, das mit Palm OS-Geräten verknüpft ist. Es wurde entwickelt, um Bilder auf Palm OS-PDAs (Personal Digital Assistants) zu speichern, die in den späten 1990er und frühen 2000er Jahren beliebt waren. Das Format ist speziell auf die Anzeige- und Speichereinschränkungen dieser Handheld-Geräte zugeschnitten, weshalb es für Bilder mit niedriger Auflösung und indizierten Farben optimiert ist, die schnell auf dem Bildschirm des Geräts gerendert werden können.
PALM-Bilder zeichnen sich durch ihre Einfachheit und Effizienz aus. Das Format unterstützt eine begrenzte Farbpalette, typischerweise bis zu 256 Farben, was für die kleinen Bildschirme von PDAs ausreichend ist. Dieser indizierte Farbansatz bedeutet, dass jedes Pixel im Bild nicht durch seinen eigenen Farbwert, sondern durch einen Index zu einer Farbtabelle dargestellt wird, die die tatsächlichen RGB-Werte (Rot, Grün, Blau) enthält. Diese Methode der Farbdarstellung ist sehr speichereffizient, was für Geräte mit begrenztem RAM und Speicherkapazität entscheidend ist.
Die grundlegende Struktur einer PALM-Bilddatei besteht aus einem Header, einer Farbpalette (wenn das Bild nicht einfarbig ist), Bitmap-Daten und möglicherweise Transparenzinformationen. Der Header enthält Metadaten zum Bild, wie z. B. seine Breite und Höhe in Pixeln, die Bittiefe (die die Anzahl der Farben bestimmt) und Flags, die angeben, ob das Bild einen Transparenzindex hat oder komprimiert ist.
Komprimierung ist ein weiteres Merkmal des PALM-Bildformats. Um noch mehr Platz zu sparen, können PALM-Bilder mit einem Run-Length-Encoding (RLE)-Algorithmus komprimiert werden. RLE ist eine Form der verlustfreien Datenkomprimierung, bei der Sequenzen desselben Datenwerts (Läufe) als einzelner Datenwert und eine Anzahl gespeichert werden. Dies ist besonders effektiv für Bilder mit großen Bereichen einheitlicher Farbe, was bei Symbolen und Benutzeroberflächenelementen, die in PDAs verwendet werden, üblich ist.
Transparenz in PALM-Bildern wird durch einen Transparenzindex gehandhabt. Dieser Index verweist auf eine Farbe in der Palette, die als transparent gekennzeichnet ist, sodass Bilder auf verschiedenen Hintergründen überlagert werden können, ohne dass ein blockiges, undurchsichtiges Rechteck um das Bild herum entsteht. Diese Funktion ist unerlässlich, um eine nahtlose Benutzeroberfläche zu erstellen, in der Symbole und andere Grafiken mit ihrem Hintergrund verschmelzen müssen.
Die Farbpalette in einem PALM-Bild ist eine kritische Komponente, da sie den Satz von Farben definiert, die im Bild verwendet werden. Die Palette ist ein Array von Farbeinträgen, wobei jeder Eintrag typischerweise ein 16-Bit-Wert ist, der eine RGB-Farbe darstellt. Die Bittiefe des Bildes bestimmt die maximale Anzahl von Farben in der Palette. Beispielsweise hätte ein Bild mit einer Tiefe von 1 Bit eine 2-Farben-Palette (normalerweise Schwarz und Weiß), während ein Bild mit einer Tiefe von 8 Bit bis zu 256 Farben haben könnte.
Die Bitmap-Daten in einer PALM-Bilddatei sind eine Pixel-für-Pixel-Darstellung des Bildes. Jedes Pixel wird als Index in der Farbpalette gespeichert. Die Speicherung dieser Daten kann in einem unkomprimierten Rohformat oder komprimiert mit RLE erfolgen. Im unkomprimierten Format sind die Bitmap-Daten einfach eine Folge von Indizes, einer für jedes Pixel, die in Zeilen von oben nach unten und Spalten von links nach rechts angeordnet sind.
Einer der einzigartigen Aspekte des PALM-Bildformats ist seine Unterstützung für mehrere Bittiefen innerhalb eines einzelnen Bildes. Dies bedeutet, dass ein Bild Bereiche mit unterschiedlichen Farbauflösungen enthalten kann. Beispielsweise könnte ein PALM-Bild ein Symbol mit hoher Farbtiefe (8 Bit) neben einem dekorativen Element mit niedriger Farbtiefe (1 Bit) haben. Diese Flexibilität ermöglicht eine effiziente Nutzung des Speichers, indem höhere Bittiefen nur dort verwendet werden, wo dies für die visuelle Qualität des Bildes erforderlich ist.
Das PALM-Bildformat unterstützt auch benutzerdefinierte Symbole und Menügrafiken, die für die Benutzeroberfläche von Palm OS-Anwendungen unerlässlich sind. Diese Bilder können in den Anwendungscode integriert und mit der Palm OS API (Application Programming Interface) auf dem Gerät angezeigt werden. Die API bietet Funktionen zum Laden, Anzeigen und Bearbeiten von PALM-Bildern, sodass Entwickler Grafiken einfach in ihre Anwendungen integrieren können.
Trotz seiner Effizienz und Nützlichkeit im Zusammenhang mit Palm OS-Geräten weist das PALM-Bildformat im Vergleich zu moderneren Bildformaten einige Einschränkungen auf. Beispielsweise unterstützt es keine True-Color-Bilder (24 Bit oder höher), was seine Verwendung in Anwendungen einschränkt, die hochauflösende Grafiken erfordern. Darüber hinaus unterstützt das Format keine erweiterten Funktionen wie Ebenen, Alphakanäle (über einfache Transparenz hinaus) oder Metadaten wie EXIF (Exchangeable Image File Format), die häufig in Formaten wie JPEG oder PNG zu finden sind.
Das PALM-Bildformat ist außerhalb von Palm OS-Geräten und -Anwendungen nicht weit verbreitet. Mit dem Niedergang von Palm OS-PDAs und dem Aufkommen von Smartphones und anderen mobilen Geräten mit fortschrittlicheren Betriebssystemen und Grafikfunktionen ist das PALM-Format weitgehend veraltet. Moderne Mobilgeräte unterstützen eine Vielzahl von Bildformaten, darunter JPEG, PNG und GIF, die eine größere Farbtiefe, eine bessere Komprimierung und mehr Funktionen als das PALM-Format bieten.
Aus historischen und Archivierungsgründen kann es erforderlich sein, PALM-Bilder in zeitgemäßere Formate zu konvertieren. Dies kann mit speziellen Softwaretools erfolgen, die das PALM-Format lesen und in ein Format wie PNG oder JPEG umwandeln können. Diese Tools analysieren typischerweise die PALM-Dateistruktur, extrahieren die Bitmap-Daten und die Farbpalette und rekonstruieren dann das Bild im Zielformat, wobei so viel wie möglich von der ursprünglichen Bildqualität erhalten bleibt.
In Bezug auf die Dateierweiterung verwenden PALM-Bilder typischerweise die Erweiterung „.pdb“ (Palm Database), da sie häufig in Palm Database-Dateien gespeichert werden, die Container für verschiedene Datentypen sind, die von Palm OS-Anwendungen verwendet werden. Die Bilddaten werden in einem bestimmten Datensatz innerhalb der PDB-Datei gespeichert, auf den die Anwendung bei Bedarf zugreifen kann. Diese Integration in das Palm Database-System macht es einfach, Bilder mit anderen Anwendungsdaten wie Text- oder Konfigurationseinstellungen zu bündeln.
Das Erstellen und Bearbeiten von PALM-Bildern erfordert ein Verständnis der Spezifikationen und Einschränkungen des Formats. Entwickler, die mit Palm OS arbeiten, verwenden in der Regel von Palm bereitgestellte Software Development Kits (SDKs), die Tools und Dokumentationen für die Arbeit mit PALM-Bildern enthalten. Diese SDKs würden Bibliotheken für die Bildverarbeitung bereitstellen, sodass Entwickler PALM-Bilder innerhalb ihrer Anwendungen erstellen, ändern und anzeigen können, ohne die Details des Dateiformats auf niedriger Ebene verwalten zu müssen.
Zusammenfassend lässt sich sagen, dass das PALM-Bildformat in der Ära der Palm OS-PDAs eine bedeutende Rolle spielte, indem es eine einfache und effiziente Möglichkeit bot, Grafiken auf Geräten mit begrenzten Ressourcen zu verarbeiten. Obwohl es in der heutigen Technologielandschaft von fortschrittlicheren Bildformaten übertroffen wurde, bietet das Verständnis des PALM-Formats Einblicke in die Designüberlegungen und Einschränkungen früherer mobiler Computerplattformen. Für diejenigen, die mit älteren Palm OS-Anwendungen oder -Geräten zu tun haben, bleibt das Wissen über das PALM-Format relevant für die Wartung und Konvertierung alter Bildressourcen.
Unterstützte Formate
AAI.aai
AAI Dune Bild
AI.ai
Adobe Illustrator CS2
AVIF.avif
AV1 Bildformat
BAYER.bayer
Rohes Bayer-Bild
BMP.bmp
Microsoft Windows Bitmap-Bild
CIN.cin
Cineon-Bilddatei
CLIP.clip
Bild-Clip-Maske
CMYK.cmyk
Rohcyan-, Magenta-, Gelb- und Schwarzproben
CUR.cur
Microsoft-Symbol
DCX.dcx
ZSoft IBM PC mehrseitige Paintbrush
DDS.dds
Microsoft DirectDraw-Oberfläche
DPX.dpx
SMTPE 268M-2003 (DPX 2.0) Bild
DXT1.dxt1
Microsoft DirectDraw-Oberfläche
EPDF.epdf
Eingekapseltes tragbares Dokumentenformat
EPI.epi
Adobe Encapsulated PostScript Interchange-Format
EPS.eps
Adobe Encapsulated PostScript
EPSF.epsf
Adobe Encapsulated PostScript
EPSI.epsi
Adobe Encapsulated PostScript Interchange-Format
EPT.ept
Eingekapseltes PostScript mit TIFF-Vorschau
EPT2.ept2
Eingekapseltes PostScript Level II mit TIFF-Vorschau
EXR.exr
Bild mit hohem Dynamikbereich (HDR)
FF.ff
Farbfeld
FITS.fits
Flexibles Bildtransport-System
GIF.gif
CompuServe-Grafikaustauschformat
HDR.hdr
Bild mit hohem Dynamikbereich (HDR)
HEIC.heic
Hocheffizienter Bildcontainer
HRZ.hrz
Slow Scan TeleVision
ICO.ico
Microsoft-Symbol
ICON.icon
Microsoft-Symbol
J2C.j2c
JPEG-2000 Codestream
J2K.j2k
JPEG-2000 Codestream
JNG.jng
JPEG Network Graphics
JP2.jp2
JPEG-2000 Dateiformat Syntax
JPE.jpe
Joint Photographic Experts Group JFIF-Format
JPEG.jpeg
Joint Photographic Experts Group JFIF-Format
JPG.jpg
Joint Photographic Experts Group JFIF-Format
JPM.jpm
JPEG-2000 Dateiformat Syntax
JPS.jps
Joint Photographic Experts Group JPS-Format
JPT.jpt
JPEG-2000 Dateiformat Syntax
JXL.jxl
JPEG XL-Bild
MAP.map
Multi-Resolution Seamless Image Database (MrSID)
MAT.mat
MATLAB-Level-5-Bildformat
PAL.pal
Palm-Pixmap
PALM.palm
Palm-Pixmap
PAM.pam
Allgemeines zweidimensionales Bitmap-Format
PBM.pbm
Portable Bitmap-Format (schwarz-weiß)
PCD.pcd
Photo-CD
PCT.pct
Apple Macintosh QuickDraw/PICT
PCX.pcx
ZSoft IBM PC Paintbrush
PDB.pdb
Palm Database ImageViewer-Format
PDF.pdf
Portable Document Format
PDFA.pdfa
Portable Document Archive-Format
PFM.pfm
Portable Float-Format
PGM.pgm
Portable Graymap-Format (Graustufen)
PGX.pgx
JPEG-2000 unkomprimiertes Format
PICT.pict
Apple Macintosh QuickDraw/PICT
PJPEG.pjpeg
Joint Photographic Experts Group JFIF-Format
PNG.png
Portable Network Graphics
PNG00.png00
PNG mit Bit-Tiefe und Farbtyp vom Originalbild erben
PNG24.png24
Opakes oder binäres transparentes 24-Bit-RGB (zlib 1.2.11)
PNG32.png32
Opakes oder binäres transparentes 32-Bit-RGBA
PNG48.png48
Opakes oder binäres transparentes 48-Bit-RGB
PNG64.png64
Opakes oder binäres transparentes 64-Bit-RGBA
PNG8.png8
Opakes oder binäres transparentes 8-Bit-Indexed
PNM.pnm
Portable Anymap
PPM.ppm
Portable Pixmap-Format (Farbe)
PS.ps
Adobe PostScript-Datei
PSB.psb
Adobe Large Document-Format
PSD.psd
Adobe Photoshop-Bitmap
RGB.rgb
Rohdaten für rote, grüne und blaue Proben
RGBA.rgba
Rohdaten für rote, grüne, blaue und Alpha-Proben
RGBO.rgbo
Rohdaten für rote, grüne, blaue und Opazität-Proben
SIX.six
DEC SIXEL-Grafikformat
SUN.sun
Sun Rasterfile
SVG.svg
Skalierbare Vektorgrafiken
TIFF.tiff
Tagged Image File Format
VDA.vda
Truevision-Targa-Bild
VIPS.vips
VIPS-Bild
WBMP.wbmp
Wireless Bitmap (Level 0) Bild
WEBP.webp
WebP-Bildformat
YUV.yuv
CCIR 601 4:1:1 oder 4:2:2
Häufig gestellte Fragen
Wie funktioniert das?
Dieser Konverter läuft vollständig in Ihrem Browser. Wenn Sie eine Datei auswählen, wird sie in den Speicher gelesen und in das ausgewählte Format konvertiert. Sie können die konvertierte Datei dann herunterladen.
Wie lange dauert die Konvertierung einer Datei?
Die Konvertierung beginnt sofort, und die meisten Dateien werden in weniger als einer Sekunde konvertiert. Größere Dateien können länger dauern.
Was passiert mit meinen Dateien?
Ihre Dateien werden niemals auf unsere Server hochgeladen. Sie werden in Ihrem Browser konvertiert, und die konvertierte Datei wird dann heruntergeladen. Wir sehen Ihre Dateien niemals.
Welche Dateitypen kann ich konvertieren?
Wir unterstützen die Konvertierung zwischen allen Bildformaten, einschließlich JPEG, PNG, GIF, WebP, SVG, BMP, TIFF und mehr.
Wie viel kostet das?
Dieser Konverter ist völlig kostenlos und wird immer kostenlos sein. Da er in Ihrem Browser läuft, müssen wir nicht für Server bezahlen, also müssen wir Ihnen auch nichts berechnen.
Kann ich mehrere Dateien auf einmal konvertieren?
Ja! Sie können so viele Dateien auf einmal konvertieren, wie Sie möchten. Wählen Sie einfach mehrere Dateien aus, wenn Sie sie hinzufügen.