অপটিক্যাল ক্যারেক্টার রিকগনিশন (OCR) টেক্সটের ছবি—স্ক্যান, স্মার্টফোনের ছবি, পিডিএফ—মেশিন-পাঠযোগ্য স্ট্রিং এবং কাঠামোবদ্ধ ডেটাতে রূপান্তরিত করে। আধুনিক OCR একটি পাইপলাইন যা একটি ছবি পরিষ্কার করে, টেক্সট খুঁজে বের করে, তা পড়ে এবং সমৃদ্ধ মেটাডেটা রপ্তানি করে যাতে ডাউনস্ট্রিম সিস্টেমগুলি ডেটা অনুসন্ধান, সূচীকরণ বা নিষ্কাশন করতে পারে। দুটি বহুল ব্যবহৃত আউটপুট স্ট্যান্ডার্ড হলো hOCR, টেক্সট এবং লেআউটের জন্য একটি HTML মাইক্রোফরম্যাট, এবং ALTO XML, একটি লাইব্রেরি/আর্কাইভ-ভিত্তিক স্কিমা; উভয়ই অবস্থান, পড়ার ক্রম এবং অন্যান্য লেআউট সংকেত সংরক্ষণ করে এবং জনপ্রিয় ইঞ্জিন দ্বারা সমর্থিত Tesseract.
প্রিপ্রসেসিং। ওসিআর গুণমান ছবির পরিচ্ছন্নতার সাথে শুরু হয়: গ্রেস্কেল রূপান্তর, ডিনয়েজিং, থ্রেশহোল্ডিং (বাইনারাইজেশন), এবং ডেস্কিউইং। ক্যানোনিকাল OpenCV টিউটোরিয়ালগুলি গ্লোবাল, অভিযোজিত এবং Otsu থ্রেশহোল্ডিং—অমসৃণ আলো বা বাইমোডাল হিস্টোগ্রাম সহ নথিগুলির জন্য প্রধান। যখন একটি পৃষ্ঠার মধ্যে আলোকসজ্জা পরিবর্তিত হয় (ফোন স্ন্যাপের কথা ভাবুন), অভিযোজিত পদ্ধতিগুলি প্রায়শই একটি একক বিশ্বব্যাপী থ্রেশহোল্ডকে ছাড়িয়ে যায়; Otsu স্বয়ংক্রিয়ভাবে হিস্টোগ্রাম বিশ্লেষণ করে একটি থ্রেশহোল্ড বেছে নেয়। টিল্ট সংশোধন সমানভাবে গুরুত্বপূর ্ণ: Hough-ভিত্তিক ডেস্কিউইং (Hough লাইন ট্রান্সফর্ম) Otsu বাইনারাইজেশনের সাথে যুক্ত হয়ে প্রোডাকশন প্রিপ্রসেসিং পাইপলাইনগুলিতে একটি সাধারণ এবং কার্যকর পদ্ধতি।
সনাক্তকরণ বনাম স্বীকৃতি। OCR সাধারণত টেক্সট সনাক্তকরণ (টেক্সট কোথায় আছে?) এবং টেক্সট স্বীকৃতি (এতে কী লেখা আছে?)-এ বিভক্ত। প্রাকৃতিক দৃশ্য এবং অনেক স্ক্যানে, সম্পূর্ণ কনভোলিউশনাল ডিটেক্টর যেমন EAST ভারী প্রস্তাবনার পর্যায় ছাড়াই দক্ষতার সাথে শব্দ- বা লাইন-স্তরের চতুর্ভুজগুলির পূর্বাভাস দেয় এবং সাধারণ টুলকিটে (যেমন, OpenCV-এর পাঠ্য সনাক্তকরণ টিউটোরিয়াল) প্রয়োগ করা হয়। জটিল পৃষ্ঠাগুলিতে ( সংবাদপত্র, ফর্ম, বই), লাইন/অঞ্চলের বিভাজন এবং পড়ার ক্রম অনুমান গুরুত্বপূর্ণ:Kraken ঐতিহ্যগত জোন/লাইন বিভাজন এবং নিউরাল বেসলাইন বিভাজন প্রয়োগ করে, বিভিন্ন স্ক্রিপ্ট এবং দিকনির্দেশের (LTR/RTL/উল্লম্ব) জন্য সুস্পষ্ট সমর্থন সহ।
স্বীকৃতি মডেল। ক্লাসিক ওপেন সোর্স ওয়ার্কহরস Tesseract (Google দ্বারা ওপেন সোর্স করা হয়েছে, যার শিকড় HP-তে রয়েছে) একটি অক্ষর ক্লাসিফায়ার থেকে একটি LSTM-ভিত্তিক ক্রম শনাক্তকারীতে বিকশিত হয়েছে এবং অনুসন্ধানযোগ্য PDF, hOCR/ALTO-বান্ধব আউটপুটএবং CLI থেকে আরও অনেক কিছু নির্গত করতে পারে। আধুনিক শনাক্তকারীরা প্রাক-বিভক্ত অক্ষর ছাড়াই ক্রম মডেলিংয়ের উপর নির্ভর করে। Connectionist Temporal Classification (CTC) মৌলিক হিসাবে রয়ে গেছে, ইনপুট ফিচার সিকোয়েন্স এবং আউটপুট লেবেল স্ট্রিংগুলির মধ্যে প্রান্তিককরণ শেখা; এটি ব্যাপকভাবে হাতের লেখা এবং সিন-টেক্সট পাইপলাইনগুলিতে ব্যবহৃত হয়।
গত কয়েক বছরে, ট্রান্সফরমাররা OCR-কে নতুন আকার দিয়েছে। TrOCR একটি ভিশন ট্রান্সফরমার এনকোডার এবং একটি টেক্সট ট্রান্সফরমার ডিকোডার ব্যবহার করে, বৃহৎ সিন্থেটিক কর্পোরার উপর প্রশিক্ষিত এবং তারপর বাস্তব ডেটাতে ফাইন-টিউন করা হয়েছে, মুদ্রিত, হস্তলিখিত এবং সিন-টেক্সট বেঞ্চমার্ক জুড়ে শক্তিশালী செயல்திறন সহ (দেখুন Hugging Face ডক্স)। সমান্তরালভাবে, কিছু সিস্টেম ডাউনস্ট্রিম বোঝার জন্য OCR-কে এড়িয়ে যায়: Donut (Document Understanding Transformer) একটি OCR-মুক্ত এনকোডার-ডিকোডার যা সরাসরি স্ট্রাকচার্ড উত্তর (যেমন কী-মান JSON) ডকুমেন্ট ছবি থেকে আউটপুট করে (রিপো, মডেল কার্ড), যখন একটি পৃথক OCR পদক্ষেপ একটি IE সিস্টেমকে ফিড করে তখন ত্রুটি জমা হওয়া এড়িয়ে যায়।
আপনি যদি অনেক স্ক্রিপ্ট জুড়ে ব্যাটারি-সহ টেক্সট রিডিং চান, EasyOCR 80+ ভাষা মডেল সহ একটি সহজ API অফার করে, বাক্স, টেক্সট এবং কনফিডেন্স প্রদান করে—প্রোটোটাইপ এবং অ-ল্যাটিন স্ক্রিপ্টের জন্য সুবিধাজনক। ঐতিহাসিক নথিগুলির জন্য, Kraken বেসলাইন সেগমেন্টেশন এবং স্ক্রিপ্ট-সচেতন রিডিং অর্ডারের সাথে উজ্জ্বল; নমনীয় লাইন-স্তরের প্রশিক্ষণের জন্য, ক্যালামারি Ocropy বংশের উপর ভিত্তি করে (Ocropy) (মাল্টি-)LSTM+CTC শনাক্তকারী এবং কাস্টম মডেল ফাইন-টিউন করার জন্য একটি CLI সহ।
সাধারণীকরণ ডেটার উপর ন ির্ভর করে। হস্তাক্ষরের জন্য, IAM হস্তাক্ষর ডেটাবেস প্রশিক্ষণ এবং মূল্যায়নের জন্য লেখক-বৈচিত্র্যময় ইংরেজি বাক্য সরবরাহ করে; এটি লাইন এবং শব্দ শনাক্তকরণের জন্য একটি দীর্ঘস্থায়ী রেফারেন্স সেট। দৃশ্য পাঠ্যের জন্য, COCO-Text MS-COCO-এর উপর ব্যাপক টীকা স্তর স্থাপন করেছে, মুদ্রিত/হস্তাক্ষর, পাঠযোগ্য/অপঠযোগ্য, স্ক্রিপ্ট এবং সম্পূর্ণ প্রতিলিপি জন্য লেবেল সহ (এছাড়াও মূল প্রকল্প পৃষ্ঠাদেখুন)। ক্ষেত্রটি সিন্থেটিক প্রিট্রেনিংয়ের উপরও ব্যাপকভাবে নির্ভর করে: সিন্থটেক্সট ইন দ্য ওয়াইল্ড বাস্তবসম্মত জ্যামিতি এবং আলো সহ ফটোগ্রাফে পাঠ্য রেন্ডার করে, ডিটেক্টর এবং শনাক্তকারীদের প্রিট্রেন করার জন্য বিশাল পরিমাণে ডেটা সরবরাহ করে (রেফারেন্স কোড ও ডেটা)।
এর অধীনে প্রতিযোগিতা ICDAR-এর রোবাস্ট রিডিং মূল্যায়নকে ভিত্তি করে রাখে। সাম্প্রতিক কাজগুলি এন্ড-টু-এন্ড সনাক্তকরণ/পঠন এবং শব্দগুলিকে বাক্যাংশে সংযুক্ত করা সহ, অফিসিয়াল কোড রিপোর্টিং স্পষ্টতা/প্রত্যাহার/এফ-স্কোর, ইন্টারসেকশন-ওভার-ইউনিয়ন (IoU), এবং অক্ষর-স্তরের সম্পাদনা-দূরত্ব মেট্রিক্স—অনুশীলনকারীদের যা ট্র্যাক করা উচিত তা प्रतिबिंबित করে।
OCR খুব কমই প্লেইন টেক্সটে শেষ হয়। আর্কাইভ এবং ডিজিটাল লাইব্রেরি পছন্দ করে ALTO XML কারণ এটি বিষয়বস্তুর পাশাপাশি ভৌত বিন্যাস (স্থানাঙ্ক সহ ব্লক/লাইন/শব্দ) এনকোড করে এবং এটি METS প্যাকেজিংয়ের সাথে ভালভাবে জুটি বাঁধে। hOCR মাইক্রোফরম্যাট, বিপরীতে, একই ধারণাটি HTML/CSS-এ ocr_line এবং ocrx_word-এর মতো ক্লাস ব্যবহার করে এম্বেড করে, যা ওয়েব টুলিংয়ের মাধ্যমে প্রদর্শন, সম্পাদনা এবং রূপান্তর করা সহজ করে তোলে। Tesseract উভয়ই প্রকাশ করে—যেমন, CLI থেকে সরাসরি hOCR বা অনুসন্ধানযোগ্য PDF তৈরি করা (PDF আউটপুট গাইড); পাইথন র্যাপার যেমন pytesseract সুবিধা যোগ করে। hOCR এবং ALTO-এর মধ্যে অনুবাদ করার জন্য রূপান্তরকারী বিদ্যমান রয়েছে যখন সংগ্রহস্থলগুলির নির্দিষ্ট ইনজেশন মান থাকে—এই সংগৃহীত তালিকাটি দেখুন OCR ফাইল-ফরম্যাট টুল.
সবচেয়ে শক্তিশালী প্রবণতা হল অভিসৃতি: সনাক্তকরণ, স্বীকৃতি, ভাষা মডেলিং এবং এমনকি টাস্ক-নির্দিষ্ট ডিকোডিং একীভূত ট্রান্সফরমার স্ট্যাকগুলিতে মিশে যাচ্ছে। বৃহৎ সিন্থেটিক কর্পোরার উপর প্রি-ট্রেনিং একটি শক্তি গুণক হিসাবে রয়ে গেছে। OCR-মুক্ত মডেলগুলি যেখানে লক্ষ্যটি ভারbatim ট্রান্সক্রিপ্টের পরিবর্তে স্ট্রাকচার্ড আউটপুট, সেখানে আক্রমণাত্মকভাবে প্রতিযোগিতা করবে। হাইব্রিড স্থাপনারও আশা করুন: একটি হালকা ডিটেক্টর এবং দীর্ঘ-ফর্ম পাঠ্যের জন্য একটি TrOCR-স্টাইল শনাক্তকারী, এবং ফর্ম এবং রসিদের জন্য একটি ডোনাট-স্টাইল মডেল।
Tesseract (GitHub) · Tesseract ডক্স · hOCR স্পেক · ALTO পটভূমি · EAST ডিটেক্টর · OpenCV টেক্সট ডিটেকশন · TrOCR · Donut · COCO-Text · SynthText · Kraken · Calamari OCR · ICDAR RRC · pytesseract · IAM হস্তাক্ষর · OCR ফাইল-ফরম্যাট টুল · EasyOCR
অপটিক্যাল ক্যারেক্টার রিকগনিশন (OCR) একটি প্রযুক্তি যা বিভিন্ন ধরণের নথি, যেমন স্ক্যান করা কাগজের নথি, PDF ফাইল বা ডিজিটাল ক্যামেরা দিয়ে তোলা ছবি, সম্পাদনাযোগ্য এবং অনুসন্ধানযোগ্য ডেটাতে রূপান্তর করতে ব্যবহৃত হয়।
OCR কাজ করে একটি ইনপুট ছবি বা নথি স্ক্যান করে, ছবিটি আলাদা আলাদা অক্ষরে বিভক্ত করে এবং প্যাটার্ন রিকগনিশন বা ফিচার রিকগনিশন ব্যবহার করে প্রতিটি অক্ষরকে অক্ষররূপের ডাটাবেসের সাথে তুলনা করে।
OCR বিভিন্ন খাতে এবং অ্যাপ্লিকেশনে ব্যবহৃত হয়, যার মধ্যে রয়েছে মুদ্রিত নথি ডিজিটাইজ করা, টেক্সট-টু-স্পিচ পরিষেবা সক্রিয় করা, ডেটা এন্ট্রি প্রক্রিয়া স্বয়ংক্রিয় করা, এবং দৃষ্টিপ্রতিবন্ধী ব্যবহারকারীদের টেক্সটের সাথে আরও ভালোভাবে ইন্টারঅ্যাক্ট করতে সহায়তা করা।
যদিও OCR প্রযুক্তিতে বড় উন্নতি হয়েছে, তবে এটি নির্ভুল নয়। মূল নথির গুণমান এবং ব্যবহৃত OCR সফটওয়্যারের নির্দিষ্টতার উপর নির্ভর করে সঠিকতা পরিবর্তিত হতে পারে।
যদিও OCR মূলত মুদ্রিত টেক্সটের জন্য তৈরি করা হয়েছে, তবে কিছু উন্নত OCR সিস্টেম স্পষ্ট, সামঞ্জস্যপূর্ণ হাতের লেখা চিনতে সক্ষম। তবে, সাধারণত হাতের লেখার শনাক্তকরণ কম সঠিক হয় কারণ ব্যক্তিগত লেখার শৈলীতে অনেক বৈচিত্র্য থাকে।
হ্যাঁ, অনেক OCR সফটওয়্যার সিস্টেম একাধিক ভাষা চিনতে পারে। তবে, আপনি যে সফটওয়্যার ব্যবহার করছেন, তাতে নির্দিষ্ট ভাষাটি সমর্থিত কিনা তা নিশ্চিত করা গুরুত্বপূর্ণ।
OCR-এর পূর্ণরূপ হলো অপটিক্যাল ক্যারেক্টার রিকগনিশন এবং এটি মুদ্রিত পাঠ্য শনাক্ত করতে ব্যবহৃত হয়, যেখানে ICR বা ইন্টেলিজেন্ট ক্যারেক্টার রিকগনিশন আরও উন্নত এবং হাতে লেখা পাঠ্য শনাক্ত করতে ব্যবহৃত হয়।
OCR সাধারণত স্পষ্ট, সহজে পড়া যায় এমন ফন্ট এবং স্ট্যান্ডার্ড টেক্সট আকারের সাথে সবচেয়ে ভালো কাজ করে। যদিও এটি বিভিন্ন ফন্ট এবং আকারের সাথে কাজ করতে পারে, তবে অস্বাভাবিক ফন্ট বা খুব ছোট টেক্সট আকারের ক্ষেত্রে সঠিকতা হ্রাস পায়।
OCR নিম্ন-রেজোলিউশন নথি, জটিল ফন্ট, খারাপভাবে মুদ্রিত টেক্সট, হাতের লেখা, এবং যে সব নথিতে টেক্সটের সাথে পটভূমি মিশে যায়, সেগুলির ক্ষেত্রে সমস্যায় পড়তে পারে। এছাড়াও, এটি অনেক ভাষায় কাজ করতে পারলেও, প্রতিটি ভাষা পুরোপুরি সমর্থন নাও করতে পারে।
হ্যাঁ, OCR রঙিন টেক্সট এবং পটভূমি স্ক্যান করতে পারে, যদিও এটি সাধারণত উচ্চ-কন্ট্র াস্ট রঙের সংমিশ্রণে বেশি কার্যকর, যেমন সাদা পটভূমির উপর কালো টেক্সট। টেক্সট এবং পটভূমির রঙে যথেষ্ট বৈসাদৃশ্য না থাকলে সঠিকতা হ্রাস পেতে পারে।
JNG (JPEG Network Graphics) ফরম্যাট হল একটি ইমেজ ফাইল ফরম্যাট যা আরও ব্যাপকভাবে পরিচিত MNG (Multiple-image Network Graphics) ফরম্যাটের একটি সাব-ফরম্যাট হিসাবে ডিজাইন করা হয়েছিল। এটি প্রাথমিকভাবে একটি একক ইমেজ ফরম্যাটের মধ্যে লসি এবং লসলেস কম্প্রেশনের জন্য একটি সমাধান প্রদানের জন্য বিকশিত হয়েছিল, যা এর তৈরির সময় JPEG বা PNG এর মতো অন্যান্য সাধারণ ফরম্যাটের সাথে সম্ভব ছিল না। JNG ফাইলগুলি সাধারণত এমন ইমেজগুলির জন্য ব্যবহৃত হয় যার জন্য উচ্চ-মানের, ফটোগ্রাফিক-স্টাইলের উপস্থাপনা এবং স্বচ্ছতার জন্য একটি ঐচ্ছিক আলফা চ্যানেলের প্রয়োজন হয়, যা স্ট ্যান্ডার্ড JPEG ইমেজ দ্বারা সমর্থিত নয়।
JNG একটি স্ট্যান্ডঅ্যালোন ফরম্যাট নয় তবে MNG ফাইল ফরম্যাট স্যুটের অংশ, যা PNG এর অ্যানিমেটেড সংস্করণ হিসাবে ডিজাইন করা হয়েছিল। MNG স্যুটে MNG এবং JNG উভয় ফরম্যাট অন্তর্ভুক্ত রয়েছে, MNG অ্যানিমেশন সমর্থন করে এবং JNG একটি একক-ইমেজ ফরম্যাট। JNG ফরম্যাটটি একই দল দ্বারা তৈরি করা হয়েছিল যারা PNG ফরম্যাটটি বিকাশ করেছিল এবং এটি একটি পৃথক আলফা চ্যানেলের সম্ভাবনা বজায় রেখে JPEG-কম্প্রেসড রঙের ডেটা যুক্ত করে PNG কে পরিপূরক করার উদ্দেশ্যে করা হয়েছিল, যা PNG সমর্থন করে কিন্তু JPEG করে না।
একটি JNG ফাইলের কাঠামো একটি MNG ফাইলের অনুরূপ, তবে এটি আরও সহজ কারণ এটি কেবল একক ইমেজের জন্য উদ্দেশ্যে করা হয়েছে। একটি JNG ফাইল একাধিক চাঙ্ক নিয়ে গঠিত, যার প্রতিটিতে একটি নির্দিষ্ট ধরনের ডেটা থাকে। একটি JNG ফাইলে সবচেয়ে গুরুত্বপূর্ণ চাঙ্কগুলি হল JHDR চাঙ্ক, যা হেডার তথ্য ধারণ করে; JDAT চ াঙ্ক, যা JPEG-কম্প্রেসড ইমেজ ডেটা ধারণ করে; JSEP চাঙ্ক, যা JPEG ডেটা স্ট্রিমের শেষ নির্দেশ করার জন্য উপস্থিত থাকতে পারে; এবং আলফা চ্যানেল চাঙ্কগুলি, যা ঐচ্ছিক এবং IDAT চাঙ্ক (PNG-কম্প্রেসড আলফা ডেটা ধারণকারী) বা JDAA চাঙ্ক (JPEG-কম্প্রেসড আলফা ডেটা ধারণকারী) হতে পারে।
JHDR চাঙ্কটি একটি JNG ফাইলের প্রথম চাঙ্ক এবং এটি গুরুত্বপূর্ণ কারণ এটি ইমেজের বৈশিষ্ট্যগুলি সংজ্ঞায়িত করে। এটি ইমেজের প্রস্থ এবং উচ্চতা, রঙের গভীরতা, একটি আলফা চ্যানেল উপস্থিত রয়েছে কিনা, ব্যবহৃত রঙের স্থান এবং আলফা চ্যানেলের জন্য কম্প্রেশন পদ্ধতির মতো তথ্য অন্তর্ভুক্ত করে। এই চাঙ্কটি ডিকোডারগুলিকে বুঝতে দেয় যে ফাইলের মধ্যে পরবর্তী ডেটা কীভাবে প্রক্রিয়া করতে হবে।
JDAT চাঙ্কটি প্রকৃত ইমেজ ডেটা ধারণ করে, যা JPEG স্ট্যান্ডার্ড কম্প্রেশন কৌশল ব্যবহার করে কম্প্রেস করা হয়। এই কম্প্রেশন ফটোগ্রাফিক ইমেজগুলির দক্ষ স্টোরেজের অনুমতি দেয়, যা প্রায়শই জটিল রঙের গ্রেডিয়েন্ট এবং স্বরে সূক্ষ্ম বৈচিত্র ধারণ করে। JNG এর মধ্যে JPEG কম্প্রেশন স্ট্যান্ডঅ্যালোন JPEG ফাইলগুলিতে ব্যবহৃত কম্প্রেশনের মতোই, যা স্ট্যান্ডার্ড JPEG ডিকোডারগুলিকে পুরো JNG ফরম্যাটটি বুঝতে না পেরেও একটি JNG ফাইল থেকে ইমেজ ডেটা পড়ার অনুমতি দেয়।
যদি একটি JNG ইমেজে একটি আলফা চ্যানেল উপস্থিত থাকে, তবে এটি IDAT বা JDAA চাঙ্কগুলিতে সংরক্ষণ করা হয়। IDAT চাঙ্কগুলি PNG ফাইলগুলিতে ব্যবহৃত চাঙ্কগুলির মতোই এবং PNG-কম্প্রেসড আলফা ডেটা ধারণ করে। এটি আলফা চ্যানেলের লসলেস কম্প্রেশনের অনুমতি দেয়, যা নিশ্চিত করে যে স্বচ্ছতার তথ্য কোনও মানের ক্ষতি ছাড়াই সংরক্ষণ করা হয়েছে। অন্যদিকে, JDAA চাঙ্কগুলি JPEG-কম্প্রেসড আলফা ডেটা ধারণ করে, যা আলফা চ্যানেলে সম্ভাব্য লসি কম্প্রেশন আর্টিফ্যাক্টের মূল্যে ছোট ফাইলের আকারের অনুমতি দেয়।
JSEP চাঙ্কটি একটি ঐচ্ছিক চাঙ্ক যা JPEG ডেটা স ্ট্রিমের শেষ নির্দেশ করে। এটি এমন ক্ষেত্রে কার্যকর যেখানে JNG ফাইলটি একটি নেটওয়ার্কের উপর স্ট্রিম করা হচ্ছে এবং ডিকোডারকে জানতে হবে কখন JPEG ডেটা পড়া বন্ধ করতে হবে এবং আলফা চ্যানেল ডেটা সন্ধান শুরু করতে হবে। এই চাঙ্কটি প্রয়োজন হয় না যদি ফাইলটি একটি স্থানীয় স্টোরেজ মাধ্যম থেকে পড়া হচ্ছে যেখানে JPEG ডেটার শেষটি ফাইলের কাঠামো থেকেই নির্ধারণ করা যেতে পারে।
JNG একটি ICCP চাঙ্ক অন্তর্ভুক্ত করে রঙ সংশোধনকেও সমর্থন করে, যা একটি এম্বেডেড ICC রঙের প্রোফাইল ধারণ করে। এই প্রোফাইলটি বিভিন্ন ডিভাইস জুড়ে সঠিক রঙের উপস্থাপনার অনুমতি দেয় এবং এটি বিশেষত এমন ইমেজগুলির জন্য গুরুত্বপূর্ণ যা বিভিন্ন স্ক্রিনে দেখা হবে বা মুদ্রিত হবে। রঙের ব্যবস্থাপনা ক্ষমতা অন্তর্ভুক্ত করা স্ট্যান্ডঅ্যালোন JPEG ফাইলগুলির উপর JNG ফরম্যাটের একটি উল্লেখযোগ্য সুবিধা, যা স্বাভাবিকভাবে এম্বেডেড রঙের প্রোফাইলগুলিকে সমর্থন করে না।
এর ক্ষমতা সত্ত্বেও, JNG ফরম্যাটটি ব্যাপকভাবে গৃহীত হয়নি। এটি আংশিকভাবে ফটোগ্রাফিক ইমেজগু
এই রূপান্তরকারী সম্পূর্ণ ভাবে আপনার ব্রাউজারে চলে। যখন আপনি একটি ফাইল নির্বাচন করেন, তা স্মৃতিতে পড়ে এবং নির্বাচিত ফর্ম্যাটে রূপান্তরিত হয়। আপনি তারপর রূপান্তরিত ফাইলটি ডাউনলোড করতে পারেন।
রূপান্তরগুলি তাৎক্ষণিকভাবে শুরু হয়, এবং বেশিরভাগ ফাইল এক সেকেন্ডের মধ্যে রূপান্তরিত হয়। বড় ফাইলগুলি আরও বেশি সময় নিতে পারে।
আপনার ফাইলগুলি কখনই আমাদের সার্ভারে আপলোড করা হয় না। তারা আপনার ব্রাউজারে রূপান্তরিত হয়, এবং রূপান্তরিত ফাইলটি তারপর ডাউনলোড করা হয়। আমরা কখনই আপনার ফাইলগুলি দেখি না।
আমরা সমস্ত চিত্র ফর্ম্যাটের মধ্যে রূপান্তর করার সমর্থন করি, যা অন্তর্ভুক্ত JPEG, PNG, GIF, WebP, SVG, BMP, TIFF, এবং আরও অনেক কিছু।
এই রূপান্তরকারী সম্পূর্ণ বিনামূল্যে, এবং সর্বদা বিনামূল্যে থাকবে। কারণ এটি আপনার ব্রাউজারে চলে, আমাদের সার্ভারের জন্য পেমেন্ট করতে হয় না, তাই আমাদের আপনাকে চার্জ করার প্রয়োজন নেই।
হ্যাঁ! আপনি যত ফাইল চান তত একবারে রূপান্তর করতে পারেন। শুধু আপনি যখন তাদের যোগ করেন তখন একাধিক ফাইল নির্বাচন করুন।