Xem dữ liệu EXIF trong bất kỳ hình ảnh ICON nào

Không giới hạn hình ảnh. Kích thước tập tin tối đa 2,5 GB. Miễn phí vĩnh viễn.

Riêng tư và an toàn

Mọi thứ xảy ra trong trình duyệt của bạn. Các tệp của bạn không bao giờ chạm vào máy chủ của chúng tôi.

Nhanh như chớp

Không tải lên, không chờ đợi. Chuyển đổi ngay khi bạn thả một tệp.

Thực sự miễn phí

Không cần tài khoản. Không có chi phí ẩn. Không có thủ thuật kích thước tệp.

EXIF (Exchangeable Image File Format) là một khối siêu dữ liệu chụp chứa các thông tin như phơi sáng, ống kính, dấu thời gian và thậm chí cả GPS, được máy ảnh và điện thoại nhúng vào tệp hình ảnh. Nó sử dụng một hệ thống thẻ kiểu TIFF được đóng gói bên trong các định dạng như JPEGTIFF. Nó rất cần thiết cho khả năng tìm kiếm, sắp xếp và tự động hóa trong các thư viện ảnh, nhưng việc chia sẻ bất cẩn có thể dẫn đến rò rỉ dữ liệu không mong muốn (ExifToolExiv2 giúp dễ dàng kiểm tra điều này).

Ở cấp độ thấp, EXIF sử dụng lại cấu trúc Thư mục tệp hình ảnh (IFD) của định dạng TIFF và, trong JPEG, nằm bên trong điểm đánh dấu APP1 (0xFFE1), lồng một tệp TIFF nhỏ một cách hiệu quả vào bên trong một vùng chứa JPEG (tổng quan về JFIF; cổng thông số kỹ thuật của CIPA). Đặc tả chính thức — CIPA DC-008 (EXIF), hiện ở phiên bản 3.x — ghi lại bố cục IFD, các loại thẻ và các ràng buộc (CIPA DC-008; tóm tắt đặc tả). EXIF xác định một IFD phụ GPS chuyên dụng (thẻ 0x8825) và một IFD có khả năng tương tác (0xA005) (bảng thẻ Exif).

Chi tiết triển khai rất quan trọng. Các tệp JPEG điển hình bắt đầu bằng một đoạn JFIF APP0, theo sau là EXIF trong APP1. Các trình đọc cũ hơn mong đợi JFIF trước, trong khi các thư viện hiện đại phân tích cả hai mà không gặp vấn đề gì (ghi chú đoạn APP). Trong thực tế, các trình phân tích cú pháp đôi khi giả định thứ tự APP hoặc giới hạn kích thước mà thông số kỹ thuật không yêu cầu, đó là lý do tại sao các nhà phát triển công cụ ghi lại các hành vi cụ thể và các trường hợp đặc biệt (hướng dẫn siêu dữ liệu Exiv2; tài liệu ExifTool).

EXIF không chỉ giới hạn ở JPEG/TIFF. Hệ sinh thái PNG đã tiêu chuẩn hóa đoạn eXIf để mang dữ liệu EXIF trong các tệp PNG (hỗ trợ ngày càng tăng, và thứ tự đoạn so với IDAT có thể quan trọng trong một số triển khai). WebP, một định dạng dựa trên RIFF, chứa EXIF, XMP và ICC trong các đoạn chuyên dụng (vùng chứa WebP RIFF; libwebp). Trên các nền tảng của Apple, Image I/O bảo toàn dữ liệu EXIF khi chuyển đổi sang HEIC/HEIF, cùng với dữ liệu XMP và thông tin nhà sản xuất (kCGImagePropertyExifDictionary).

Nếu bạn đã từng tự hỏi làm thế nào các ứng dụng suy ra cài đặt máy ảnh, bản đồ thẻ EXIF là câu trả lời: Make, Model,FNumber, ExposureTime, ISOSpeedRatings, FocalLength, MeteringMode, và nhiều hơn nữa nằm trong các IFD phụ chính và EXIF (thẻ Exif; thẻ Exiv2). Apple hiển thị chúng thông qua các hằng số Image I/O như ExifFNumber GPSDictionary. Trên Android, AndroidX ExifInterface đọc và ghi dữ liệu EXIF trên JPEG, PNG, WebP và HEIF.

Định hướng, Thời gian và các vấn đề khác

Định hướng hình ảnh đáng được đề cập đặc biệt. Hầu hết các thiết bị lưu trữ pixel “nguyên trạng” và ghi lại một thẻ cho người xem biết cách xoay khi hiển thị. Đó là thẻ 274 (Orientation) với các giá trị như 1 (bình thường), 6 (90° theo chiều kim đồng hồ), 3 (180°), 8 (270°). Việc không tuân thủ hoặc cập nhật không chính xác thẻ này sẽ dẫn đến ảnh bị xoay, hình thu nhỏ không khớp và lỗi học máy ở các giai đoạn xử lý tiếp theo (thẻ định hướng;hướng dẫn thực tế). Trong các quy trình xử lý, việc chuẩn hóa thường được áp dụng bằng cách xoay pixel vật lý và đặt Orientation=1(ExifTool).

Việc chấm công phức tạp hơn vẻ ngoài của nó. Các thẻ lịch sử như DateTimeOriginal thiếu múi giờ, điều này làm cho các cảnh quay xuyên biên giới trở nên mơ hồ. Các thẻ mới hơn thêm thông tin về múi giờ — ví dụ: OffsetTimeOriginal — để phần mềm có thể ghi lại DateTimeOriginal cộng với một độ lệch UTC (ví dụ: -07:00) để sắp xếp và tương quan địa lý chính xác (thẻ OffsetTime*;tổng quan về thẻ).

EXIF so với IPTC so với XMP

EXIF cùng tồn tại — và đôi khi chồng chéo — với Siêu dữ liệu ảnh IPTC (tiêu đề, người tạo, quyền, chủ đề) và XMP, khuôn khổ dựa trên RDF của Adobe được tiêu chuẩn hóa thành ISO 16684-1. Trong thực tế, phần mềm được triển khai đúng cách sẽ dung hòa dữ liệu EXIF do máy ảnh tạo ra với dữ liệu IPTC/XMP do người dùng nhập vào mà không loại bỏ một trong hai (hướng dẫn IPTC;LoC trên XMP;LoC trên EXIF).

Quyền riêng tư và bảo mật

Các vấn đề về quyền riêng tư khiến EXIF trở thành một chủ đề gây tranh cãi. Gắn thẻ địa lý và số sê-ri thiết bị đã tiết lộ các vị trí nhạy cảm nhiều hơn một lần; một ví dụ điển hình là bức ảnh Vice năm 2012 của John McAfee, trong đó tọa độ GPS EXIF được cho là đã tiết lộ tung tích của anh ta (Wired;The Guardian). Nhiều nền tảng xã hội xóa hầu hết dữ liệu EXIF khi tải lên, nhưng các triển khai khác nhau và thay đổi theo thời gian. Bạn nên xác minh điều này bằng cách tải xuống các bài đăng của riêng bạn và kiểm tra chúng bằng một công cụ thích hợp (trợ giúp về phương tiện truyền thông của Twitter;trợ giúp của Facebook;trợ giúp của Instagram).

Các nhà nghiên cứu bảo mật cũng theo dõi chặt chẽ các trình phân tích cú pháp EXIF. Các lỗ hổng trong các thư viện được sử dụng rộng rãi (ví dụ: libexif) đã bao gồm tràn bộ đệm và đọc ngoài giới hạn, được kích hoạt bởi các thẻ bị định dạng sai. Những thẻ này dễ dàng tạo ra vì EXIF là một tệp nhị phân có cấu trúc ở một nơi có thể dự đoán được (cảnh báo;tìm kiếm NVD). Điều quan trọng là phải cập nhật các thư viện siêu dữ liệu và xử lý hình ảnh trong một môi trường biệt lập (sandbox) nếu chúng đến từ các nguồn không đáng tin cậy.

Mẹo thực tế

  • Quản lý thông tin vị trí một cách có ý thức: tắt tính năng gắn thẻ địa lý của máy ảnh khi thích hợp hoặc xóa dữ liệu GPS khi xuất. Giữ một bản gốc riêng nếu bạn cần dữ liệu sau này (ExifTool;Exiv2 CLI).
  • Chuẩn hóa định hướng và dấu thời gian trong các quy trình xử lý, lý tưởng nhất là ghi lại vòng quay vật lý và xóa các thẻ không rõ ràng (hoặc thêm OffsetTime*). (Định hướng;OffsetTime*).
  • Bảo toàn siêu dữ liệu mô tả (tín dụng/quyền) bằng cách ánh xạ EXIF↔IPTC↔XMP theo hướng dẫn IPTC hiện tại và ưu tiên XMP cho các trường phong phú, có thể mở rộng.
  • Đối với PNG/WebP/HEIF, hãy xác minh rằng các thư viện của bạn thực sự đọc và ghi dữ liệu ở các vị trí EXIF/XMP hiện đại; đừng cho rằng có sự tương đương với JPEG (PNG eXIf;vùng chứa WebP;Image I/O).
  • Luôn cập nhật các phần phụ thuộc, vì siêu dữ liệu là một mục tiêu thường xuyên cho các cuộc tấn công vào trình phân tích cú pháp (cảnh báo libexif).

Được sử dụng một cách chu đáo, EXIF là một yếu tố quan trọng cung cấp năng lượng cho các danh mục ảnh, quy trình công việc về quyền và các đường ống thị giác máy tính. Được sử dụng một cách ngây thơ, nó trở thành một dấu vết kỹ thuật số mà bạn có thể không muốn chia sẻ. Tin tốt: hệ sinh thái — thông số kỹ thuật, API hệ điều hành và công cụ — cung cấp cho bạn quyền kiểm soát bạn cần (CIPA EXIF;ExifTool;Exiv2;IPTC;XMP).

Đọc thêm và tài liệu tham khảo

Câu hỏi thường gặp

Dữ liệu EXIF là gì?

Dữ liệu EXIF (Exchangeable Image File Format) là một tập hợp siêu dữ liệu về một bức ảnh, chẳng hạn như cài đặt máy ảnh, ngày và giờ chụp, và nếu GPS được bật, cả vị trí.

Làm thế nào tôi có thể xem dữ liệu EXIF?

Hầu hết các trình xem và chỉnh sửa hình ảnh (ví dụ: Adobe Photoshop, Windows Photo Viewer) đều cho phép xem dữ liệu EXIF. Thông thường, chỉ cần mở bảng thuộc tính hoặc thông tin của tệp.

Dữ liệu EXIF có thể được chỉnh sửa không?

Có, dữ liệu EXIF có thể được chỉnh sửa bằng phần mềm chuyên dụng như Adobe Photoshop, Lightroom hoặc các công cụ trực tuyến dễ sử dụng, cho phép bạn sửa đổi hoặc xóa các trường siêu dữ liệu cụ thể.

Dữ liệu EXIF có gây rủi ro về quyền riêng tư không?

Có. Nếu GPS được bật, dữ liệu vị trí được lưu trữ trong siêu dữ liệu EXIF có thể tiết lộ thông tin địa lý nhạy cảm. Do đó, bạn nên xóa hoặc ẩn danh dữ liệu này trước khi chia sẻ ảnh.

Làm thế nào tôi có thể loại bỏ dữ liệu EXIF?

Nhiều chương trình cho phép bạn loại bỏ dữ liệu EXIF. Quá trình này thường được gọi là 'loại bỏ' siêu dữ liệu. Cũng có các công cụ trực tuyến cung cấp chức năng này.

Các trang mạng xã hội có giữ lại dữ liệu EXIF không?

Hầu hết các nền tảng mạng xã hội như Facebook, Instagram và Twitter tự động xóa dữ liệu EXIF khỏi hình ảnh để bảo vệ quyền riêng tư của người dùng.

Dữ liệu EXIF cung cấp loại thông tin nào?

Dữ liệu EXIF có thể bao gồm, trong số những thứ khác, kiểu máy ảnh, ngày và giờ chụp, độ dài tiêu cự, thời gian phơi sáng, khẩu độ, cài đặt ISO, cân bằng trắng và vị trí GPS.

Tại sao dữ liệu EXIF hữu ích cho các nhiếp ảnh gia?

Đối với các nhiếp ảnh gia, dữ liệu EXIF là một hướng dẫn quý giá để hiểu các cài đặt chính xác được sử dụng cho một bức ảnh. Thông tin này giúp cải thiện kỹ thuật và tái tạo các điều kiện tương tự trong tương lai.

Tất cả các hình ảnh có chứa dữ liệu EXIF không?

Không, chỉ những hình ảnh được chụp bằng các thiết bị hỗ trợ siêu dữ liệu EXIF, chẳng hạn như máy ảnh kỹ thuật số và điện thoại thông minh, mới chứa dữ liệu này.

Có một định dạng tiêu chuẩn cho dữ liệu EXIF không?

Có, dữ liệu EXIF tuân theo tiêu chuẩn do Hiệp hội Phát triển Công nghiệp Điện tử Nhật Bản (JEIDA) thiết lập. Tuy nhiên, một số nhà sản xuất có thể bao gồm thông tin độc quyền bổ sung.

Định dạng ICON là gì?

Biểu tượng Microsoft

HDR (High Dynamic Range) là công nghệ nhằm thu hẹp khoảng cách giữa khả năng cảm nhận nhiều mức độ sáng của mắt người và giới hạn của hệ thống hình ảnh kỹ thuật số truyền thống trong việc chụp, xử lý và hiển thị các dải đó. Không giống như hình ảnh dải động chuẩn (SDR), có khả năng giới hạn trong việc thể hiện các cực trị của sáng và tối trong cùng một khung hình, hình ảnh HDR có thể hiển thị phổ rộng hơn các mức độ sáng. Điều này tạo ra những bức ảnh sống động hơn, chân thực hơn và gần gũi hơn với những gì mắt người cảm nhận được trong thế giới thực.

Khái niệm về dải động là trọng tâm để hiểu về hình ảnh HDR. Dải động đề cập đến tỷ lệ giữa vùng sáng nhất và vùng tối nhất có thể được chụp, xử lý hoặc hiển thị bởi hệ thống hình ảnh. Nó thường được đo bằng các điểm dừng, với mỗi điểm dừng biểu thị việc tăng hoặc giảm một nửa lượng ánh sáng. Hình ảnh SDR truyền thống thường hoạt động trong dải động khoảng 6 đến 9 điểm dừng. Mặt khác, công nghệ HDR nhằm vượt qua giới hạn này một cách đáng kể, với mục tiêu đạt được hoặc thậm chí vượt quá dải động của mắt người, khoảng 14 đến 24 điểm dừng trong một số điều kiện nhất định.

Hình ảnh HDR được tạo ra thông qua sự kết hợp của các kỹ thuật chụp tiên tiến, thuật toán xử lý sáng tạo và công nghệ hiển thị. Ở giai đoạn chụp, nhiều lần phơi sáng cùng một cảnh được thực hiện ở các mức độ sáng khác nhau. Các lần phơi sáng này chụp chi tiết trong bóng tối nhất đến vùng sáng nhất. Sau đó, quá trình HDR liên quan đến việc kết hợp các lần phơi sáng này thành một hình ảnh duy nhất có dải động lớn hơn nhiều so với những gì có thể chụp được trong một lần phơi sáng duy nhất bằng cảm biến hình ảnh kỹ thuật số truyền thống.

Việc xử lý hình ảnh HDR liên quan đến việc ánh xạ dải rộng các mức độ sáng được chụp thành một định dạng có thể được lưu trữ, truyền và cuối cùng là hiển thị hiệu quả. Ánh xạ tông màu là một phần quan trọng của quá trình này. Nó chuyển đổi dải động cao của cảnh được chụp thành dải động tương thích với màn hình mục tiêu hoặc phương tiện đầu ra, đồng thời cố gắng duy trì tác động trực quan của các biến thể độ sáng ban đầu của cảnh. Điều này thường liên quan đến các thuật toán tinh vi điều chỉnh cẩn thận độ sáng, độ tương phản và độ bão hòa màu để tạo ra những hình ảnh trông tự nhiên và hấp dẫn đối với người xem.

Hình ảnh HDR thường được lưu ở các định dạng tệp chuyên dụng có thể chứa dải thông tin độ sáng mở rộng. Các định dạng như JPEG-HDR, OpenEXR và TIFF đã được phát triển đặc biệt cho mục đích này. Các định dạng này sử dụng nhiều kỹ thuật khác nhau, chẳng hạn như số dấu phẩy động và không gian màu mở rộng, để mã hóa chính xác dải rộng thông tin độ sáng và màu sắc trong hình ảnh HDR. Điều này không chỉ bảo toàn độ trung thực cao của nội dung HDR mà còn đảm bảo khả năng tương thích với hệ sinh thái rộng lớn các thiết bị và phần mềm hỗ trợ HDR.

Để hiển thị nội dung HDR, cần có màn hình có khả năng đạt độ sáng cao hơn, màu đen sâu hơn và gam màu rộng hơn so với những gì màn hình tiêu chuẩn có thể cung cấp. Màn hình tương thích với HDR sử dụng các công nghệ như OLED (Điốt phát sáng hữu cơ) và tấm nền LCD (Màn hình tinh thể lỏng) tiên tiến với các cải tiến về đèn nền LED (Điốt phát sáng) để đạt được các đặc điểm này. Khả năng hiển thị cả sự khác biệt về độ sáng tinh tế và rõ ràng của các màn hình này giúp tăng cường đáng kể cảm giác về chiều sâu, chi tiết và tính chân thực của người xem.

Sự phổ biến của nội dung HDR đã được thúc đẩy hơn nữa nhờ sự phát triển của các tiêu chuẩn HDR và siêu dữ liệu. Các tiêu chuẩn như HDR10, Dolby Vision và Hybrid Log-Gamma (HLG) chỉ định các hướng dẫn để mã hóa, truyền và hiển thị nội dung HDR trên các nền tảng và thiết bị khác nhau. Siêu dữ liệu HDR đóng một vai trò quan trọng trong hệ sinh thái này bằng cách cung cấp thông tin về hiệu chuẩn màu sắc và mức độ sáng của nội dung. Điều này cho phép các thiết bị tối ưu hóa khả năng hiển thị HDR của chúng theo các đặc điểm cụ thể của từng nội dung, đảm bảo trải nghiệm xem chất lượng cao nhất quán.

Một trong những thách thức trong hình ảnh HDR là nhu cầu tích hợp liền mạch vào các quy trình làm việc và công nghệ hiện có, vốn chủ yếu hướng đến nội dung SDR. Điều này không chỉ bao gồm việc chụp và xử lý hình ảnh mà còn cả việc phân phối và hiển thị chúng. Bất chấp những thách thức này, việc áp dụng HDR đang phát triển nhanh chóng, phần lớn nhờ vào sự hỗ trợ của những người sáng tạo nội dung lớn, các dịch vụ phát trực tuyến và các nhà sản xuất thiết bị điện tử. Khi công nghệ HDR tiếp tục phát triển và trở nên dễ tiếp cận hơn, công nghệ này dự kiến sẽ trở thành tiêu chuẩn cho nhiều ứng dụng, từ nhiếp ảnh và điện ảnh đến trò chơi điện tử và thực tế ảo.

Một thách thức khác liên quan đến công nghệ HDR là sự cân bằng giữa mong muốn tăng dải động và nhu cầu duy trì khả năng tương thích với các công nghệ hiển thị hiện có. Mặc dù HDR mang đến cơ hội để nâng cao đáng kể trải nghiệm hình ảnh, nhưng cũng có nguy cơ HDR được triển khai kém có thể dẫn đến hình ảnh xuất hiện quá tối hoặc quá sáng trên các màn hình không hoàn toàn tương thích với HDR. Ánh xạ tông màu phù hợp và cân nhắc cẩn thận về khả năng hiển thị của người dùng cuối là điều cần thiết để đảm bảo rằng nội dung HDR có thể tiếp cận được với nhiều đối tượng và mang lại trải nghiệm xem được cải thiện toàn diện.

Các cân nhắc về môi trường cũng ngày càng trở nên quan trọng trong cuộc thảo luận về công nghệ HDR. Mức tiêu thụ điện năng cao hơn cần thiết cho màn hình sáng hơn của các thiết bị hỗ trợ HDR đặt ra những thách thức về hiệu quả năng lượng và tính bền vững. Các nhà sản xuất và kỹ sư liên tục làm việc để phát triển các phương pháp tiết kiệm năng lượng hơn để đạt được độ sáng và độ tương phản cao mà không ảnh hưởng đến dấu chân môi trường của các thiết bị này.

Tương lai của hình ảnh HDR có vẻ đầy hứa hẹn, với các nghiên cứu và phát triển đang diễn ra tập trung vào việc khắc phục những hạn chế hiện tại và mở rộng khả năng của công nghệ. Các công nghệ mới nổi, chẳng hạn như màn hình chấm lượng tử và micro-LED, có tiềm năng nâng cao hơn nữa độ sáng, độ chính xác màu sắc và hiệu quả của màn hình HDR. Ngoài ra, những tiến bộ trong công nghệ chụp và xử lý nhằm mục đích làm cho HDR dễ tiếp cận hơn với những người sáng tạo nội dung bằng cách đơn giản hóa quy trình làm việc và giảm nhu cầu về thiết bị chuyên dụng.

Trong lĩnh vực tiêu thụ nội dung, công nghệ HDR cũng đang mở ra những con đường mới cho trải nghiệm nhập vai. Trong trò chơi điện tử và thực tế ảo, HDR có thể nâng cao đáng kể cảm giác hiện diện và tính chân thực bằng cách tái tạo chính xác hơn độ sáng và sự đa dạng màu sắc của thế giới thực. Điều này không chỉ cải thiện chất lượng hình ảnh mà còn làm sâu sắc thêm tác động cảm xúc của trải nghiệm kỹ thuật số, khiến chúng trở nên hấp dẫn và sống động hơn.

Ngoài giải trí, công nghệ HDR có ứng dụng trong các lĩnh vực như hình ảnh y tế, nơi khả năng hiển thị nhiều mức độ sáng hơn có thể giúp phát hiện các chi tiết có thể bị bỏ sót trong hình ảnh tiêu chuẩn. Tương tự, trong các lĩnh vực như thiên văn học và viễn thích, hình ảnh HDR có thể chụp được sự tinh tế của các thiên thể và các đặc điểm bề mặt Trái đất với độ rõ nét và chiều sâu chưa từng có.

Tóm lại, công nghệ HDR đại diện cho một bước tiến đáng kể trong hình ảnh kỹ thuật số, mang đến trải nghiệm hình ảnh nâng cao giúp nội dung kỹ thuật số gần hơn với sự phong phú và chiều sâu của thế giới thực. Bất chấp những thách thức liên quan đến việc triển khai và áp dụng rộng rãi, những lợi ích của HDR là rõ ràng. Khi công nghệ này tiếp tục phát triển và tích hợp vào nhiều ngành công nghiệp khác nhau, công nghệ này có tiềm năng cách mạng hóa cách chúng ta chụp, xử lý và cảm nhận hình ảnh kỹ thuật số, mở ra những khả năng mới cho sự sáng tạo, khám phá và hiểu biết.

Định dạng được hỗ trợ

AAI.aai

Hình ảnh Dune AAI

AI.ai

Adobe Illustrator CS2

AVIF.avif

Định dạng tệp hình ảnh AV1

BAYER.bayer

Hình ảnh Bayer thô

BMP.bmp

Hình ảnh bitmap Microsoft Windows

CIN.cin

Tệp hình ảnh Cineon

CLIP.clip

Mặt nạ cắt hình ảnh

CMYK.cmyk

Mẫu thô màu xanh lam, đỏ mạnh, vàng và đen

CUR.cur

Biểu tượng Microsoft

DCX.dcx

ZSoft IBM PC Paintbrush đa trang

DDS.dds

Microsoft DirectDraw Surface

DPX.dpx

Hình ảnh SMTPE 268M-2003 (DPX 2.0)

DXT1.dxt1

Microsoft DirectDraw Surface

EPDF.epdf

Định dạng tài liệu di động được đóng gói

EPI.epi

Định dạng trao đổi PostScript được đóng gói của Adobe

EPS.eps

PostScript được đóng gói của Adobe

EPSF.epsf

PostScript được đóng gói của Adobe

EPSI.epsi

Định dạng trao đổi PostScript được đóng gói của Adobe

EPT.ept

PostScript được đóng gói với xem trước TIFF

EPT2.ept2

PostScript Level II được đóng gói với xem trước TIFF

EXR.exr

Hình ảnh phạm vi động cao (HDR)

FF.ff

Farbfeld

FITS.fits

Hệ thống vận chuyển hình ảnh linh hoạt

GIF.gif

Định dạng trao đổi đồ họa CompuServe

HDR.hdr

Hình ảnh phạm vi động cao

HEIC.heic

Container hình ảnh hiệu quả cao

HRZ.hrz

Slow Scan TeleVision

ICO.ico

Biểu tượng Microsoft

ICON.icon

Biểu tượng Microsoft

J2C.j2c

Dòng mã JPEG-2000

J2K.j2k

Dòng mã JPEG-2000

JNG.jng

Đồ họa mạng JPEG

JP2.jp2

Cú pháp định dạng tệp JPEG-2000

JPE.jpe

Định dạng JFIF của Nhóm chuyên gia hình ảnh liên hợp

JPEG.jpeg

Định dạng JFIF của Nhóm chuyên gia hình ảnh liên hợp

JPG.jpg

Định dạng JFIF của Nhóm chuyên gia hình ảnh liên hợp

JPM.jpm

Cú pháp định dạng tệp JPEG-2000

JPS.jps

Định dạng JPS của Nhóm chuyên gia hình ảnh liên hợp

JPT.jpt

Cú pháp định dạng tệp JPEG-2000

JXL.jxl

Hình ảnh JPEG XL

MAP.map

Cơ sở dữ liệu hình ảnh liền mạch đa phân giải (MrSID)

MAT.mat

Định dạng hình ảnh MATLAB level 5

PAL.pal

Pixmap Palm

PALM.palm

Pixmap Palm

PAM.pam

Định dạng bitmap 2 chiều phổ biến

PBM.pbm

Định dạng bitmap di động (đen và trắng)

PCD.pcd

CD Ảnh

PCT.pct

Apple Macintosh QuickDraw/PICT

PCX.pcx

ZSoft IBM PC Paintbrush

PDB.pdb

Định dạng ImageViewer cơ sở dữ liệu Palm

PDF.pdf

Định dạng tài liệu di động

PDFA.pdfa

Định dạng lưu trữ tài liệu di động

PFM.pfm

Định dạng float di động

PGM.pgm

Định dạng graymap di động (xám)

PGX.pgx

Định dạng không nén JPEG 2000

PICT.pict

Apple Macintosh QuickDraw/PICT

PJPEG.pjpeg

Định dạng JFIF của Nhóm chuyên gia nhiếp ảnh liên hiệp

PNG.png

Đồ họa mạng di động

PNG00.png00

PNG kế thừa độ sâu bit, loại màu từ hình ảnh gốc

PNG24.png24

RGB 24 bit trong suốt hoặc nhị phân (zlib 1.2.11)

PNG32.png32

RGBA 32 bit trong suốt hoặc nhị phân

PNG48.png48

RGB 48 bit trong suốt hoặc nhị phân

PNG64.png64

RGBA 64 bit trong suốt hoặc nhị phân

PNG8.png8

8-bit chỉ mục trong suốt hoặc nhị phân

PNM.pnm

Anymap di động

PPM.ppm

Định dạng pixmap di động (màu)

PS.ps

Tệp Adobe PostScript

PSB.psb

Định dạng tài liệu lớn Adobe

PSD.psd

Bitmap Adobe Photoshop

RGB.rgb

Mẫu thô đỏ, xanh lá cây, và xanh dương

RGBA.rgba

Mẫu thô đỏ, xanh lá cây, xanh dương, và alpha

RGBO.rgbo

Mẫu thô đỏ, xanh lá cây, xanh dương, và độ mờ

SIX.six

Định dạng đồ họa DEC SIXEL

SUN.sun

Rasterfile Sun

SVG.svg

Đồ họa Vector có thể mở rộng

TIFF.tiff

Định dạng tệp hình ảnh được gắn thẻ

VDA.vda

Hình ảnh Truevision Targa

VIPS.vips

Hình ảnh VIPS

WBMP.wbmp

Hình ảnh Bitmap không dây (cấp độ 0)

WEBP.webp

Định dạng hình ảnh WebP

YUV.yuv

CCIR 601 4:1:1 hoặc 4:2:2

Câu hỏi thường gặp

Cái này hoạt động như thế nào?

Bộ chuyển đổi này chạy hoàn toàn trong trình duyệt của bạn. Khi bạn chọn một tệp, nó sẽ được đọc vào bộ nhớ và chuyển đổi sang định dạng đã chọn. Sau đó, bạn có thể tải xuống tệp đã chuyển đổi.

Mất bao lâu để chuyển đổi một tệp?

Việc chuyển đổi bắt đầu ngay lập tức và hầu hết các tệp được chuyển đổi trong vòng chưa đầy một giây. Các tệp lớn hơn có thể mất nhiều thời gian hơn.

Điều gì xảy ra với các tệp của tôi?

Các tệp của bạn không bao giờ được tải lên máy chủ của chúng tôi. Chúng được chuyển đổi trong trình duyệt của bạn và sau đó tệp đã chuyển đổi sẽ được tải xuống. Chúng tôi không bao giờ thấy các tệp của bạn.

Tôi có thể chuyển đổi những loại tệp nào?

Chúng tôi hỗ trợ chuyển đổi giữa tất cả các định dạng hình ảnh, bao gồm JPEG, PNG, GIF, WebP, SVG, BMP, TIFF, v.v.

Cái này giá bao nhiêu?

Bộ chuyển đổi này hoàn toàn miễn phí và sẽ luôn miễn phí. Bởi vì nó chạy trong trình duyệt của bạn, chúng tôi không phải trả tiền cho máy chủ, vì vậy chúng tôi không cần tính phí bạn.

Tôi có thể chuyển đổi nhiều tệp cùng một lúc không?

Đúng! Bạn có thể chuyển đổi bao nhiêu tệp tùy thích cùng một lúc. Chỉ cần chọn nhiều tệp khi bạn thêm chúng.