OCR PNG 어떤 이미지

사진, 스캔 또는 PDF(최대 2.5GB)를 드롭하세요. 브라우저에서 바로 텍스트를 추출합니다. 무료, 무제한이며 파일은 기기를 떠나지 않습니다.

비공개 및 보안

모든 것이 브라우저에서 발생합니다. 파일은 서버에 닿지 않습니다.

엄청나게 빠른

업로드도, 기다림도 없습니다. 파일을 놓는 순간 변환하세요.

정말로 무료

계정이 필요 없습니다. 숨겨진 비용이 없습니다. 파일 크기 트릭이 없습니다.

광학 문자 인식(OCR)은 텍스트 이미지(스캔, 스마트폰 사진, PDF)를 기계가 읽을 수 있는 문자열로, 그리고 점점 더 구조화된 데이터로 변환합니다. 최신 OCR은 이미지를 정리하고, 텍스트를 찾고, 읽고, 풍부한 메타데이터를 내보내는 파이프라인으로, 다운스트림 시스템이 필드를 검색, 색인 또는 추출할 수 있도록 합니다. 널리 사용되는 두 가지 출력 표준은 hOCR, 텍스트 및 레이아웃을 위한 HTML 마이크로포맷, 및 ALTO XML, 도서관/기록 보관소 지향 스키마입니다. 둘 다 위치, 읽기 순서 및 기타 레이아웃 단서를 보존하며 다음과 같은 인기 있는 엔진에서 지원됩니다. Tesseract.

파이프라인 둘러보기

전처리. OCR 품질은 이미지 정리부터 시작됩니다: 그레이스케일 변환, 노이즈 제거, 임계값 처리(이진화) 및 기울기 보정. 표준 OpenCV 튜토리얼은 전역, 적응형 Otsu 임계값 처리를 다룹니다. 이는 불균일한 조명이나 이중 모드 히스토그램이 있는 문서의 필수 요소입니다. 페이지 내에서 조명이 달라지면 (휴대폰 사진을 생각해보세요), 적응형 방법이 단일 전역 임계값보다 성능이 뛰어난 경우가 많습니다. Otsu는 히스토그램을 분석하여 자동으로 임계값을 선택합니다. 기울기 보정도 마찬가지로 중요합니다: Hough 기반 기울기 보정(Hough 라인 변환)과 Otsu 이진화를 함께 사용하면 프로덕션 전처리 파이프라인에서 일반적이고 효과적인 방법입니다.

탐지 대 인식. OCR은 일반적으로 텍스트 탐지(텍스트는 어디에 있는가?)와 텍스트 인식(무슨 내용인가?)으로 나뉩니다. 자연스러운 장면과 많은 스캔에서 완전 컨볼루션 탐지기 같은 EAST 는 무거운 제안 단계 없이 단어 또는 줄 수준의 사각형을 효율적으로 예측하며 일반적인 툴킷(예: OpenCV의 텍스트 탐지 튜토리얼)에 구현되어 있습니다. 복잡한 페이지(신문, 양식, 책)에서는 줄/영역의 분할과 읽기 순서 추론이 중요합니다:Kraken 은 전통적인 영역/줄 분할과 신경망 기준선 분할을 구현하며, 다양한 스크립트와 방향(LTR/RTL/수직)을 명시적으로 지원합니다.

인식 모델. 고전적인 오픈 소스 주력 제품인 Tesseract (HP에서 시작하여 Google이 오픈 소스로 공개)는 문자 분류기에서 LSTM 기반 시퀀스 인식기로 발전했으며 검색 가능한 PDF, hOCR/ALTO 친화적인 출력등을 CLI에서 내보낼 수 있습니다. 최신 인식기는 미리 분할된 문자 없이 시퀀스 모델링에 의존합니다. 연결주의적 시간 분류(CTC) 는 입력 특징 시퀀스와 출력 레이블 문자열 간의 정렬을 학습하는 기본으로 남아 있으며, 필기 및 장면 텍스트 파이프라인에서 널리 사용됩니다.

지난 몇 년 동안 Transformer는 OCR을 재구성했습니다. TrOCR 은 비전 Transformer 인코더와 텍스트 Transformer 디코더를 사용하며, 대규모 합성 코퍼스에서 훈련한 다음 실제 데이터로 미세 조정하여 인쇄, 필기 및 장면 텍스트 벤치마크에서 강력한 성능을 보입니다(참조: Hugging Face 문서). 병행하여 일부 시스템은 다운스트림 이해를 위해 OCR을 건너뜁니다: Donut(문서 이해 Transformer) 은 문서 이미지에서 직접 구조화된 답변(키-값 JSON 등)을 출력하는 OCR 없는 인코더-디코더입니다(리포지토리, 모델 카드), 별도의 OCR 단계가 IE 시스템에 공급될 때 오류 누적을 방지합니다.

엔진 및 라이브러리

많은 스크립트에서 바로 사용할 수 있는 텍스트 읽기를 원한다면 EasyOCR 은 80개 이상의 언어 모델과 함께 간단한 API를 제공하여 상자, 텍스트 및 신뢰도를 반환하므로 프로토타입과 비라틴 스크립트에 유용합니다. 역사적 문서의 경우 Kraken 은 기준선 분할 및 스크립트 인식 읽기 순서로 뛰어납니다. 유연한 줄 수준 훈련을 위해 Calamari 는 Ocropy 계보를 기반으로 합니다(Ocropy) (다중)LSTM+CTC 인식기와 사용자 지정 모델 미세 조정을 위한 CLI가 있습니다.

데이터 세트 및 벤치마크

일반화는 데이터에 달려 있습니다. 필기의 경우 IAM 필기 데이터베이스 는 훈련 및 평가를 위해 다양한 필체의 영어 문장을 제공합니다. 이는 줄 및 단어 인식을 위한 오랜 참조 세트입니다. 장면 텍스트의 경우 COCO-Text 는 MS-COCO 위에 광범위한 주석을 계층화했으며, 인쇄/필기, 읽기 가능/읽기 불가능, 스크립트 및 전체 전사에 대한 레이블이 있습니다(원본 프로젝트 페이지참조). 이 분야는 또한 합성 사전 훈련에 크게 의존합니다: SynthText in the Wild 는 사실적인 기하학과 조명으로 사진에 텍스트를 렌더링하여 사전 훈련 탐지기 및 인식기를 위한 방대한 양의 데이터를 제공합니다(참조: 코드 및 데이터).

ICDAR의 강력한 읽기 산하의 대회는 평가를 현실에 기반하게 합니다. 최근 과제는 종단 간 탐지/읽기를 강조하며 단어를 구문으로 연결하는 것을 포함하며, 공식 코드 보고 정밀도/재현율/F-점수, 교차 오버 유니온 (IoU) 및 문자 수준 편집 거리 메트릭—실무자가 추적해야 할 사항을 반영합니다.

출력 형식 및 다운스트림 사용

OCR은 일반 텍스트로 끝나는 경우가 거의 없습니다. 아카이브 및 디지털 도서관은 ALTO XML 을 선호합니다. 왜냐하면 콘텐츠와 함께 물리적 레이아웃(좌표가 있는 블록/줄/단어)을 인코딩하고 METS 패키징과 잘 어울리기 때문입니다. hOCR 마이크로포맷은 대조적으로 ocr_line ocrx_word와 같은 클래스를 사용하여 동일한 아이디어를 HTML/CSS에 포함시켜 웹 도구로 쉽게 표시, 편집 및 변환할 수 있도록 합니다. Tesseract는 둘 다 노출합니다. 예를 들어 CLI에서 직접 hOCR 또는 검색 가능한 PDF 생성(PDF 출력 가이드); pytesseract 와 같은 Python 래퍼는 편의성을 더합니다. 리포지토리에 고정된 수집 표준이 있을 때 hOCR과 ALTO 간에 변환하는 변환기가 있습니다. 이 선별된 목록을 참조하십시오. OCR 파일 형식 도구.

실용적인 지침

  • 데이터 및 정리부터 시작하십시오. 이미지가 휴대폰 사진이거나 품질이 혼합된 스캔인 경우 모델 조정 전에 임계값 처리(적응형 및 Otsu) 및 기울기 보정(Hough)에 투자하십시오. 인식기를 교체하는 것보다 강력한 전처리 레시피에서 더 많은 것을 얻을 수 있습니다.
  • 올바른 탐지기를 선택하십시오. 일반적인 열이 있는 스캔된 페이지의 경우 페이지 분할기(영역 → 줄)로 충분할 수 있습니다. 자연스러운 이미지의 경우 EAST 와 같은 단일 샷 탐지기는 강력한 기준선이며 많은 툴킷에 연결됩니다(OpenCV 예제).
  • 텍스트와 일치하는 인식기를 선택하십시오. 인쇄된 라틴어의 경우 Tesseract(LSTM/OEM) 는 견고하고 빠릅니다. 다중 스크립트 또는 빠른 프로토타입의 경우 EasyOCR 은 생산적입니다. 필기 또는 역사적 서체의 경우 Kraken 또는 Calamari 를 고려하고 미세 조정을 계획하십시오. 문서 이해(키-값 추출, VQA)와 긴밀하게 결합해야 하는 경우 스키마에서 TrOCR (OCR) 대 Donut (OCR 없음)을 평가하십시오. Donut은 전체 통합 단계를 제거할 수 있습니다.
  • 중요한 것을 측정하십시오. 종단 간 시스템의 경우 탐지 F-점수 및 인식 CER/WER(둘 다 Levenshtein 편집 거리에 기반함; CTC참조)을 보고하십시오. 레이아웃이 많은 작업의 경우 IoU/긴밀도 및 문자 수준 정규화된 편집 거리를 ICDAR RRC 평가 키트에서와 같이 추적하십시오.
  • 풍부한 출력을 내보내십시오. hOCR /ALTO (또는 둘 다)를 선호하여 좌표와 읽기 순서를 유지하십시오. 이는 검색 결과 강조 표시, 표/필드 추출 및 출처에 필수적입니다. Tesseract의 CLI 및 pytesseract 는 이를 한 줄로 만듭니다.

앞으로의 전망

가장 강력한 추세는 융합입니다: 탐지, 인식, 언어 모델링, 심지어 작업별 디코딩까지 통합된 Transformer 스택으로 통합되고 있습니다. 대규모 합성 코퍼스 에서의 사전 훈련은 여전히 힘의 승수입니다. OCR 없는 모델은 대상이 글자 그대로의 전사가 아닌 구조화된 출력인 곳이면 어디에서나 공격적으로 경쟁할 것입니다. 하이브리드 배포도 기대하십시오: 긴 형식 텍스트를 위한 경량 탐지기 + TrOCR 스타일 인식기, 그리고 양식 및 영수증을 위한 Donut 스타일 모델.

추가 자료 및 도구

Tesseract (GitHub) · Tesseract 문서 · hOCR 사양 · ALTO 배경 · EAST 탐지기 · OpenCV 텍스트 탐지 · TrOCR · Donut · COCO-Text · SynthText · Kraken · Calamari OCR · ICDAR RRC · pytesseract · IAM 필기 · OCR 파일 형식 도구 · EasyOCR

자주 묻는 질문

OCR이란 무엇인가요?

광학 문자 인식 (OCR)은 스캔된 종이 문서, PDF 파일 또는 디지털 카메라로 촬영된 이미지와 같은 다양한 유형의 문서를 편집 가능하고 검색 가능한 데이터로 변환하는데 사용되는 기술입니다.

OCR은 어떻게 작동하나요?

OCR은 입력 이미지 또는 문서를 스캔하고, 이미지를 개별 문자로 분할하고, 패턴 인식 또는 특징 인식을 사용하여 각 문자를 문자 모양의 데이터베이스와 비교하는 방식으로 작동합니다.

OCR의 실용적인 응용 사례는 무엇인가요?

OCR은 인쇄된 문서를 디지털화하고, 텍스트를 음성 서비스를 활성화하고, 데이터 입력 과정을 자동화하며, 시각 장애 사용자가 텍스트와 더 잘 상호작용하도록 돕는 등 다양한 부문과 응용 프로그램에서 사용됩니다.

OCR은 항상 100% 정확한가요?

OCR 기술에는 큰 발전이 있었지만, 완벽하지는 않습니다. 원본 문서의 품질과 사용 중인 OCR 소프트웨어의 특정사항에 따라 정확성이 달라질 수 있습니다.

OCR은 필기체를 인식할 수 있나요?

OCR은 주로 인쇄된 텍스트에 대해 설계되었지만, 일부 고급 OCR 시스템은 분명하고 일관된 필기를 인식할 수도 있습니다. 그러나 일반적으로 필기체 인식은 개개인의 글씨 스타일에 있는 넓은 차이 때문에 덜 정확합니다.

OCR은 여러 언어를 처리할 수 있나요?

네, 많은 OCR 소프트웨어 시스템은 여러 언어를 인식할 수 있습니다. 그러나, 특정 언어가 사용 중인 소프트웨어에 의해 지원되는지 확인하는 것이 중요합니다.

OCR과 ICR의 차이점은 무엇인가요?

OCR은 광학 문자 인식을 의미하며 인쇄된 텍스트를 인식하는데 사용되는 반면, ICR은 Intelligent Character Recognition의 약자로서 필기 텍스트를 인식하는데 사용되는 더 고급스러운 기술입니다.

OCR은 모든 글꼴과 텍스트 크기와 함께 작동하나요?

OCR은 명확하고 읽기 쉬운 글꼴과 표준 텍스트 크기와 가장 잘 작동합니다. 다양한 글꼴과 크기로 작업할 수 있지만, 특이한 글꼴이나 매우 작은 텍스트 크기를 처리할 때 정확도가 떨어질 수 있습니다.

OCR 기술의 한계는 무엇인가요?

OCR은 해상도가 낮은 문서, 복잡한 폰트, 인쇄 상태가 좋지 않은 텍스트, 필기체, 텍스트와 방해되는 배경을 가진 문서 등에 대해 어려움을 겪을 수 있습니다. 또한, 많은 언어를 처리할 수 있지만 모든 언어를 완벽하게 커버하지는 않을 수 있습니다.

OCR은 컬러 텍스트 또는 컬러 배경을 스캔할 수 있나요?

네, OCR은 컬러 텍스트와 배경을 스캔할 수 있지만, 일반적으로 검은색 텍스트와 흰색 배경과 같은 높은 대비 색상 조합에서 더 효과적입니다. 텍스트와 배경색이 충분히 대비를 이루지 못할 때 정확성이 감소할 수 있습니다.

PNG 형식이란 무엇인가요?

휴대용 네트워크 그래픽

PNG는 Portable Network Graphics의 약자로, 무손실 데이터 압축을 지원하는 래스터 그래픽 파일 형식입니다. Graphics Interchange Format(GIF)를 대체하는 개선되고 특허가 없는 형식으로 개발된 PNG는 전문가 수준의 그래픽뿐만 아니라 사진과 기타 유형의 디지털 이미지를 인터넷으로 전송하도록 설계되었습니다. PNG의 가장 주목할 만한 특징 중 하나는 브라우저 기반 애플리케이션에서 투명도를 지원하는 것으로, 웹 디자인 및 개발에서 중요한 형식이 되었습니다.

PNG의 시작은 GIF 형식에서 사용된 압축 기술을 둘러싼 특허 문제에 따른 1995년으로 거슬러 올라갑니다. 새로운 그래픽 형식을 만들어 달라는 요청이 comp.graphics 뉴스그룹에 올라왔고, 이로 인해 PNG가 개발되었습니다. 이 새로운 형식의 주요 목표는 GIF의 한계를 개선하고 극복하는 것이었습니다. 목표 중에는 256개 이상의 색상을 가진 이미지를 지원하고, 투명도를 위한 알파 채널을 포함하고, 인터레이싱 옵션을 제공하고, 형식이 특허가 없고 오픈 소스 개발에 적합하도록 하는 것이었습니다.

PNG 파일은 1비트 흑백에서 빨간색, 녹색, 파란색(RGB)에 대해 채널당 16비트까지 다양한 색상 깊이를 지원하여 이미지 보존 품질이 뛰어납니다. 이러한 광범위한 색상 지원 덕분에 PNG는 작은 파일 크기로 선 그리기, 텍스트, 아이콘 그래픽을 저장하는 데 적합합니다. 또한 PNG는 알파 채널을 지원하여 다양한 투명도를 허용하여 그림자, 글로우, 반투명 개체와 같은 복잡한 효과를 디지털 이미지에 정밀하게 렌더링할 수 있습니다.

PNG의 두드러진 특징 중 하나는 DEFLATE 방법을 사용하여 정의된 무손실 압축 알고리즘입니다. 이 알고리즘은 이미지 품질을 희생하지 않고 파일 크기를 줄이도록 설계되었습니다. 압축 효율성은 압축되는 데이터 유형에 따라 달라집니다. 특히 균일한 색상이나 반복 패턴이 큰 이미지에 효과적입니다. 무손실 압축이지만 PNG가 JPEG와 같은 형식에 비해 항상 가장 작은 파일 크기를 생성하지는 않을 수 있다는 점에 유의하는 것이 중요합니다. 특히 복잡한 사진의 경우 그렇습니다.

PNG 파일의 구조는 청크를 기반으로 하며, 각 청크는 이미지에 대한 특정 유형의 데이터 또는 메타데이터를 나타냅니다. PNG 파일에 있는 주요 청크 유형은 다음과 같습니다. IHDR(이미지 헤더): 이미지에 대한 기본 정보가 포함되어 있습니다. PLTE(팔레트): 색인 색상 이미지에 사용된 모든 색상을 나열합니다. IDAT(이미지 데이터): DEFLATE 알고리즘으로 압축된 실제 이미지 데이터가 포함되어 있습니다. IEND(이미지 트레일러): PNG 파일의 끝을 표시합니다. 추가 보조 청크는 텍스트 주석 및 감마 값과 같이 이미지에 대한 자세한 정보를 제공할 수 있습니다.

PNG는 또한 인터넷을 통해 이미지를 표시하고 전송하는 것을 개선하기 위한 여러 기능을 통합합니다. 특히 Adam7 알고리즘을 사용하는 인터레이싱을 통해 이미지를 점진적으로 로드할 수 있으며, 이는 느린 인터넷 연결을 통해 이미지를 볼 때 특히 유용할 수 있습니다. 이 기술은 먼저 전체 이미지의 저품질 버전을 표시한 다음 더 많은 데이터를 다운로드하면서 점차 품질이 향상됩니다. 이 기능은 사용자 경험을 향상시킬 뿐만 아니라 웹 사용에 실질적인 이점을 제공합니다.

PNG 파일의 투명도는 GIF에 비해 더 정교한 방식으로 처리됩니다. GIF는 단순한 이진 투명도(픽셀이 완전히 투명하거나 완전히 불투명함)를 지원하는 반면, PNG는 알파 투명도 개념을 도입합니다. 이를 통해 픽셀은 완전히 불투명에서 완전히 투명까지 다양한 투명도를 가질 수 있어 이미지와 배경 간에 더 부드러운 블렌딩과 전환이 가능합니다. 이 기능은 다양한 색상과 패턴의 배경에 이미지를 오버레이해야 하는 웹 디자이너에게 특히 중요합니다.

PNG는 많은 장점이 있지만 몇 가지 한계도 있습니다. 예를 들어, 파일 크기 효율성 측면에서 디지털 사진을 저장하는 데 가장 적합한 선택은 아닙니다. PNG의 무손실 압축은 품질 저하가 없음을 보장하지만, 사진을 압축하도록 특별히 설계된 JPEG와 같은 손실 형식에 비해 파일 크기가 더 커질 수 있습니다. 이로 인해 PNG는 대역폭 또는 저장 용량이 제한된 애플리케이션에 덜 적합해집니다. 또한 PNG는 GIF 및 WebP와 같은 형식이 제공하는 기능인 애니메이션 이미지를 기본적으로 지원하지 않습니다.

PNG 파일에는 이미지 품질을 떨어뜨리지 않고 웹 사용을 위해 파일 크기를 줄이는 최적화 기술을 적용할 수 있습니다. PNGCRUSH 및 OptiPNG와 같은 도구는 가장 효율적인 압축 매개변수를 선택하고 이미지에 가장 적합한 수준으로 색상 깊이를 줄이는 등 다양한 전략을 사용합니다. 이러한 도구는 PNG 파일의 크기를 크게 줄여 로딩 시간과 대역폭 사용이 중요한 우려 사항인 웹 사용에 더 효율적으로 만들 수 있습니다.

또한 PNG 파일에 감마 보정 정보를 포함하면 이미지가 다양한 장치에서 더 일관되게 표시됩니다. 감마 보정은 디스플레이 장치의 특성에 따라 이미지의 밝기 수준을 조정하는 데 도움이 됩니다. 이 기능은 디스플레이 속성이 다른 다양한 장치에서 이미지를 볼 수 있는 웹 그래픽 맥락에서 특히 가치가 있습니다.

PNG의 법적 지위는 널리 받아들여지고 채택되는 데 기여했습니다. 특허가 없기 때문에 PNG는 다른 일부 이미지 형식과 관련된 법적 복잡성과 라이선스 비용을 피할 수 있습니다. 이로 인해 비용과 법적 자유가 중요한 고려 사항인 오픈 소스 프로젝트와 애플리케이션에 특히 매력적으로 작용했습니다. 이 형식은 웹 브라우저, 이미지 편집 프로그램, 운영 체제를 포함한 광범위한 소프트웨어에서 지원되어 다양한 디지털 워크플로에 통합하기 쉽습니다.

접근성과 호환성도 PNG 형식의 주요 장점입니다. PNG 파일은 단색에서 알파 투명도가 있는 트루컬러까지 다양한 색상을 지원하므로 간단한 웹 그래픽에서 고품질 인쇄물까지 다양한 애플리케이션에서 사용할 수 있습니다. 다양한 플랫폼과 소프트웨어 간의 상호 운용성을 통해 PNG 형식으로 저장된 이미지를 호환성 문제에 대한 우려 없이 쉽게 공유하고 볼 수 있습니다.

기술적 진보와 커뮤니티 기여는 PNG 형식을 지속적으로 향상시키고 있습니다. APNG(Animated Portable Network Graphics)와 같은 혁신은 표준 PNG 뷰어와의 하위 호환성을 유지하면서 애니메이션 지원을 도입합니다. 이러한 진화는 이 형식의 적응성과 사용자 요구에 대응하여 기능을 확장하려는 활발한 커뮤니티의 노력을 반영합니다. 이러한 개발은 빠르게 진화하는 디지털 환경에서 PNG의 지속적인 관련성을 보장합니다.

결론적으로 PNG 이미지 형식은 품질 보존과 파일 크기 효율성 사이의 균형을 맞추어 디지털 이미지 공유 및 저장의 필수 요소가 되었습니다. 높은 색상 깊이, 알파 투명도, 무손실 압축을 지원하는 기능은 웹 디자인에서 보관 저장까지 다양한 애플리케이션에 다목적으로 사용할 수 있게 합니다. 모든 상황에 최적의 선택은 아니지만 품질, 호환성, 법적 자유의 장점은 디지털 이미징 세계에서 귀중한 자산이 됩니다.

지원하는 형식

AAI.aai

AAI Dune 이미지

AI.ai

Adobe Illustrator CS2

AVIF.avif

AV1 이미지 파일 형식

BAYER.bayer

원시 Bayer 이미지

BMP.bmp

Microsoft Windows 비트맵 이미지

CIN.cin

Cineon 이미지 파일

CLIP.clip

이미지 클립 마스크

CMYK.cmyk

원시 청색, 마젠타, 노란색, 검정색 샘플

CUR.cur

Microsoft 아이콘

DCX.dcx

ZSoft IBM PC 다중 페이지 Paintbrush

DDS.dds

Microsoft DirectDraw 표면

DPX.dpx

SMTPE 268M-2003 (DPX 2.0) 이미지

DXT1.dxt1

Microsoft DirectDraw 표면

EPDF.epdf

캡슐화된 휴대용 문서 형식

EPI.epi

Adobe 캡슐화된 포스트스크립트 교환 형식

EPS.eps

Adobe 캡슐화된 포스트스크립트

EPSF.epsf

Adobe 캡슐화된 포스트스크립트

EPSI.epsi

Adobe 캡슐화된 포스트스크립트 교환 형식

EPT.ept

TIFF 미리보기가 포함된 캡슐화된 포스트스크립트

EPT2.ept2

TIFF 미리보기가 포함된 캡슐화된 포스트스크립트 레벨 II

EXR.exr

고 다이나믹 레인지 (HDR) 이미지

FF.ff

Farbfeld

FITS.fits

유연한 이미지 전송 시스템

GIF.gif

CompuServe 그래픽 교환 형식

HDR.hdr

고 다이나믹 레인지 이미지

HEIC.heic

고효율 이미지 컨테이너

HRZ.hrz

슬로우 스캔 텔레비전

ICO.ico

Microsoft 아이콘

ICON.icon

Microsoft 아이콘

J2C.j2c

JPEG-2000 코드 스트림

J2K.j2k

JPEG-2000 코드 스트림

JNG.jng

JPEG Network Graphics

JP2.jp2

JPEG-2000 파일 형식 구문

JPE.jpe

Joint Photographic Experts Group JFIF 형식

JPEG.jpeg

Joint Photographic Experts Group JFIF 형식

JPG.jpg

Joint Photographic Experts Group JFIF 형식

JPM.jpm

JPEG-2000 파일 형식 구문

JPS.jps

Joint Photographic Experts Group JPS 형식

JPT.jpt

JPEG-2000 파일 형식 구문

JXL.jxl

JPEG XL 이미지

MAP.map

다중 해상도 Seamless Image Database (MrSID)

MAT.mat

MATLAB 레벨 5 이미지 형식

PAL.pal

Palm 픽스맵

PALM.palm

Palm 픽스맵

PAM.pam

일반적인 2차원 비트맵 형식

PBM.pbm

휴대용 비트맵 형식 (흑백)

PCD.pcd

Photo CD

PCT.pct

Apple Macintosh QuickDraw/PICT

PCX.pcx

ZSoft IBM PC Paintbrush

PDB.pdb

Palm Database ImageViewer 형식

PDF.pdf

휴대용 문서 형식

PDFA.pdfa

휴대용 문서 아카이브 형식

PFM.pfm

휴대용 부동 소수점 형식

PGM.pgm

휴대용 그레이맵 형식 (그레이 스케일)

PGX.pgx

JPEG 2000 압축되지 않은 형식

PICT.pict

Apple Macintosh QuickDraw/PICT

PJPEG.pjpeg

Joint Photographic Experts Group JFIF 형식

PNG.png

휴대용 네트워크 그래픽

PNG00.png00

원본 이미지에서 비트 깊이, 색상 유형 상속

PNG24.png24

불투명 또는 이진 투명 24비트 RGB (zlib 1.2.11)

PNG32.png32

불투명 또는 이진 투명 32비트 RGBA

PNG48.png48

불투명 또는 이진 투명 48비트 RGB

PNG64.png64

불투명 또는 이진 투명 64비트 RGBA

PNG8.png8

불투명 또는 이진 투명 8비트 인덱스

PNM.pnm

휴대용 anymap

PPM.ppm

휴대용 픽스맵 형식 (색상)

PS.ps

Adobe PostScript 파일

PSB.psb

Adobe Large Document 형식

PSD.psd

Adobe Photoshop 비트맵

RGB.rgb

Raw red, green, and blue 샘플

RGBA.rgba

Raw red, green, blue, and alpha 샘플

RGBO.rgbo

Raw red, green, blue, and opacity 샘플

SIX.six

DEC SIXEL 그래픽 형식

SUN.sun

Sun Rasterfile

SVG.svg

확장 가능한 벡터 그래픽

TIFF.tiff

태그가 지정된 이미지 파일 형식

VDA.vda

Truevision Targa 이미지

VIPS.vips

VIPS 이미지

WBMP.wbmp

무선 비트맵 (레벨 0) 이미지

WEBP.webp

WebP 이미지 형식

YUV.yuv

CCIR 601 4:1:1 또는 4:2:2

자주 묻는 질문

어떻게 작동하나요?

이 변환기는 전적으로 브라우저에서 실행됩니다. 파일을 선택하면 메모리로 읽어와 선택한 형식으로 변환됩니다. 그런 다음 변환된 파일을 다운로드할 수 있습니다.

파일을 변환하는 데 얼마나 걸립니까?

변환은 즉시 시작되며 대부분의 파일은 1초 이내에 변환됩니다. 파일이 크면 더 오래 걸릴 수 있습니다.

내 파일은 어떻게 되나요?

파일은 서버에 업로드되지 않습니다. 브라우저에서 변환된 다음 변환된 파일이 다운로드됩니다. 우리는 귀하의 파일을 절대 보지 않습니다.

어떤 파일 형식을 변환할 수 있나요?

JPEG, PNG, GIF, WebP, SVG, BMP, TIFF 등을 포함한 모든 이미지 형식 간의 변환을 지원합니다.

비용은 얼마인가요?

이 변환기는 완전히 무료이며 항상 무료입니다. 브라우저에서 실행되기 때문에 서버 비용을 지불할 필요가 없으므로 비용을 청구할 필요가 없습니다.

한 번에 여러 파일을 변환할 수 있나요?

예! 한 번에 원하는 만큼 많은 파일을 변환할 수 있습니다. 추가할 때 여러 파일을 선택하기만 하면 됩니다.