OCR PDB 어떤 이미지

사진, 스캔 또는 PDF(최대 2.5GB)를 드롭하세요. 브라우저에서 바로 텍스트를 추출합니다. 무료, 무제한이며 파일은 기기를 떠나지 않습니다.

비공개 및 보안

모든 것이 브라우저에서 발생합니다. 파일은 서버에 닿지 않습니다.

엄청나게 빠른

업로드도, 기다림도 없습니다. 파일을 놓는 순간 변환하세요.

정말로 무료

계정이 필요 없습니다. 숨겨진 비용이 없습니다. 파일 크기 트릭이 없습니다.

광학 문자 인식(OCR)은 텍스트 이미지(스캔, 스마트폰 사진, PDF)를 기계가 읽을 수 있는 문자열로, 그리고 점점 더 구조화된 데이터로 변환합니다. 최신 OCR은 이미지를 정리하고, 텍스트를 찾고, 읽고, 풍부한 메타데이터를 내보내는 파이프라인으로, 다운스트림 시스템이 필드를 검색, 색인 또는 추출할 수 있도록 합니다. 널리 사용되는 두 가지 출력 표준은 hOCR, 텍스트 및 레이아웃을 위한 HTML 마이크로포맷, 및 ALTO XML, 도서관/기록 보관소 지향 스키마입니다. 둘 다 위치, 읽기 순서 및 기타 레이아웃 단서를 보존하며 다음과 같은 인기 있는 엔진에서 지원됩니다. Tesseract.

파이프라인 둘러보기

전처리. OCR 품질은 이미지 정리부터 시작됩니다: 그레이스케일 변환, 노이즈 제거, 임계값 처리(이진화) 및 기울기 보정. 표준 OpenCV 튜토리얼은 전역, 적응형 Otsu 임계값 처리를 다룹니다. 이는 불균일한 조명이나 이중 모드 히스토그램이 있는 문서의 필수 요소입니다. 페이지 내에서 조명이 달라지면 (휴대폰 사진을 생각해보세요), 적응형 방법이 단일 전역 임계값보다 성능이 뛰어난 경우가 많습니다. Otsu는 히스토그램을 분석하여 자동으로 임계값을 선택합니다. 기울기 보정도 마찬가지로 중요합니다: Hough 기반 기울기 보정(Hough 라인 변환)과 Otsu 이진화를 함께 사용하면 프로덕션 전처리 파이프라인에서 일반적이고 효과적인 방법입니다.

탐지 대 인식. OCR은 일반적으로 텍스트 탐지(텍스트는 어디에 있는가?)와 텍스트 인식(무슨 내용인가?)으로 나뉩니다. 자연스러운 장면과 많은 스캔에서 완전 컨볼루션 탐지기 같은 EAST 는 무거운 제안 단계 없이 단어 또는 줄 수준의 사각형을 효율적으로 예측하며 일반적인 툴킷(예: OpenCV의 텍스트 탐지 튜토리얼)에 구현되어 있습니다. 복잡한 페이지(신문, 양식, 책)에서는 줄/영역의 분할과 읽기 순서 추론이 중요합니다:Kraken 은 전통적인 영역/줄 분할과 신경망 기준선 분할을 구현하며, 다양한 스크립트와 방향(LTR/RTL/수직)을 명시적으로 지원합니다.

인식 모델. 고전적인 오픈 소스 주력 제품인 Tesseract (HP에서 시작하여 Google이 오픈 소스로 공개)는 문자 분류기에서 LSTM 기반 시퀀스 인식기로 발전했으며 검색 가능한 PDF, hOCR/ALTO 친화적인 출력등을 CLI에서 내보낼 수 있습니다. 최신 인식기는 미리 분할된 문자 없이 시퀀스 모델링에 의존합니다. 연결주의적 시간 분류(CTC) 는 입력 특징 시퀀스와 출력 레이블 문자열 간의 정렬을 학습하는 기본으로 남아 있으며, 필기 및 장면 텍스트 파이프라인에서 널리 사용됩니다.

지난 몇 년 동안 Transformer는 OCR을 재구성했습니다. TrOCR 은 비전 Transformer 인코더와 텍스트 Transformer 디코더를 사용하며, 대규모 합성 코퍼스에서 훈련한 다음 실제 데이터로 미세 조정하여 인쇄, 필기 및 장면 텍스트 벤치마크에서 강력한 성능을 보입니다(참조: Hugging Face 문서). 병행하여 일부 시스템은 다운스트림 이해를 위해 OCR을 건너뜁니다: Donut(문서 이해 Transformer) 은 문서 이미지에서 직접 구조화된 답변(키-값 JSON 등)을 출력하는 OCR 없는 인코더-디코더입니다(리포지토리, 모델 카드), 별도의 OCR 단계가 IE 시스템에 공급될 때 오류 누적을 방지합니다.

엔진 및 라이브러리

많은 스크립트에서 바로 사용할 수 있는 텍스트 읽기를 원한다면 EasyOCR 은 80개 이상의 언어 모델과 함께 간단한 API를 제공하여 상자, 텍스트 및 신뢰도를 반환하므로 프로토타입과 비라틴 스크립트에 유용합니다. 역사적 문서의 경우 Kraken 은 기준선 분할 및 스크립트 인식 읽기 순서로 뛰어납니다. 유연한 줄 수준 훈련을 위해 Calamari 는 Ocropy 계보를 기반으로 합니다(Ocropy) (다중)LSTM+CTC 인식기와 사용자 지정 모델 미세 조정을 위한 CLI가 있습니다.

데이터 세트 및 벤치마크

일반화는 데이터에 달려 있습니다. 필기의 경우 IAM 필기 데이터베이스 는 훈련 및 평가를 위해 다양한 필체의 영어 문장을 제공합니다. 이는 줄 및 단어 인식을 위한 오랜 참조 세트입니다. 장면 텍스트의 경우 COCO-Text 는 MS-COCO 위에 광범위한 주석을 계층화했으며, 인쇄/필기, 읽기 가능/읽기 불가능, 스크립트 및 전체 전사에 대한 레이블이 있습니다(원본 프로젝트 페이지참조). 이 분야는 또한 합성 사전 훈련에 크게 의존합니다: SynthText in the Wild 는 사실적인 기하학과 조명으로 사진에 텍스트를 렌더링하여 사전 훈련 탐지기 및 인식기를 위한 방대한 양의 데이터를 제공합니다(참조: 코드 및 데이터).

ICDAR의 강력한 읽기 산하의 대회는 평가를 현실에 기반하게 합니다. 최근 과제는 종단 간 탐지/읽기를 강조하며 단어를 구문으로 연결하는 것을 포함하며, 공식 코드 보고 정밀도/재현율/F-점수, 교차 오버 유니온 (IoU) 및 문자 수준 편집 거리 메트릭—실무자가 추적해야 할 사항을 반영합니다.

출력 형식 및 다운스트림 사용

OCR은 일반 텍스트로 끝나는 경우가 거의 없습니다. 아카이브 및 디지털 도서관은 ALTO XML 을 선호합니다. 왜냐하면 콘텐츠와 함께 물리적 레이아웃(좌표가 있는 블록/줄/단어)을 인코딩하고 METS 패키징과 잘 어울리기 때문입니다. hOCR 마이크로포맷은 대조적으로 ocr_line ocrx_word와 같은 클래스를 사용하여 동일한 아이디어를 HTML/CSS에 포함시켜 웹 도구로 쉽게 표시, 편집 및 변환할 수 있도록 합니다. Tesseract는 둘 다 노출합니다. 예를 들어 CLI에서 직접 hOCR 또는 검색 가능한 PDF 생성(PDF 출력 가이드); pytesseract 와 같은 Python 래퍼는 편의성을 더합니다. 리포지토리에 고정된 수집 표준이 있을 때 hOCR과 ALTO 간에 변환하는 변환기가 있습니다. 이 선별된 목록을 참조하십시오. OCR 파일 형식 도구.

실용적인 지침

  • 데이터 및 정리부터 시작하십시오. 이미지가 휴대폰 사진이거나 품질이 혼합된 스캔인 경우 모델 조정 전에 임계값 처리(적응형 및 Otsu) 및 기울기 보정(Hough)에 투자하십시오. 인식기를 교체하는 것보다 강력한 전처리 레시피에서 더 많은 것을 얻을 수 있습니다.
  • 올바른 탐지기를 선택하십시오. 일반적인 열이 있는 스캔된 페이지의 경우 페이지 분할기(영역 → 줄)로 충분할 수 있습니다. 자연스러운 이미지의 경우 EAST 와 같은 단일 샷 탐지기는 강력한 기준선이며 많은 툴킷에 연결됩니다(OpenCV 예제).
  • 텍스트와 일치하는 인식기를 선택하십시오. 인쇄된 라틴어의 경우 Tesseract(LSTM/OEM) 는 견고하고 빠릅니다. 다중 스크립트 또는 빠른 프로토타입의 경우 EasyOCR 은 생산적입니다. 필기 또는 역사적 서체의 경우 Kraken 또는 Calamari 를 고려하고 미세 조정을 계획하십시오. 문서 이해(키-값 추출, VQA)와 긴밀하게 결합해야 하는 경우 스키마에서 TrOCR (OCR) 대 Donut (OCR 없음)을 평가하십시오. Donut은 전체 통합 단계를 제거할 수 있습니다.
  • 중요한 것을 측정하십시오. 종단 간 시스템의 경우 탐지 F-점수 및 인식 CER/WER(둘 다 Levenshtein 편집 거리에 기반함; CTC참조)을 보고하십시오. 레이아웃이 많은 작업의 경우 IoU/긴밀도 및 문자 수준 정규화된 편집 거리를 ICDAR RRC 평가 키트에서와 같이 추적하십시오.
  • 풍부한 출력을 내보내십시오. hOCR /ALTO (또는 둘 다)를 선호하여 좌표와 읽기 순서를 유지하십시오. 이는 검색 결과 강조 표시, 표/필드 추출 및 출처에 필수적입니다. Tesseract의 CLI 및 pytesseract 는 이를 한 줄로 만듭니다.

앞으로의 전망

가장 강력한 추세는 융합입니다: 탐지, 인식, 언어 모델링, 심지어 작업별 디코딩까지 통합된 Transformer 스택으로 통합되고 있습니다. 대규모 합성 코퍼스 에서의 사전 훈련은 여전히 힘의 승수입니다. OCR 없는 모델은 대상이 글자 그대로의 전사가 아닌 구조화된 출력인 곳이면 어디에서나 공격적으로 경쟁할 것입니다. 하이브리드 배포도 기대하십시오: 긴 형식 텍스트를 위한 경량 탐지기 + TrOCR 스타일 인식기, 그리고 양식 및 영수증을 위한 Donut 스타일 모델.

추가 자료 및 도구

Tesseract (GitHub) · Tesseract 문서 · hOCR 사양 · ALTO 배경 · EAST 탐지기 · OpenCV 텍스트 탐지 · TrOCR · Donut · COCO-Text · SynthText · Kraken · Calamari OCR · ICDAR RRC · pytesseract · IAM 필기 · OCR 파일 형식 도구 · EasyOCR

자주 묻는 질문

OCR이란 무엇인가요?

광학 문자 인식 (OCR)은 스캔된 종이 문서, PDF 파일 또는 디지털 카메라로 촬영된 이미지와 같은 다양한 유형의 문서를 편집 가능하고 검색 가능한 데이터로 변환하는데 사용되는 기술입니다.

OCR은 어떻게 작동하나요?

OCR은 입력 이미지 또는 문서를 스캔하고, 이미지를 개별 문자로 분할하고, 패턴 인식 또는 특징 인식을 사용하여 각 문자를 문자 모양의 데이터베이스와 비교하는 방식으로 작동합니다.

OCR의 실용적인 응용 사례는 무엇인가요?

OCR은 인쇄된 문서를 디지털화하고, 텍스트를 음성 서비스를 활성화하고, 데이터 입력 과정을 자동화하며, 시각 장애 사용자가 텍스트와 더 잘 상호작용하도록 돕는 등 다양한 부문과 응용 프로그램에서 사용됩니다.

OCR은 항상 100% 정확한가요?

OCR 기술에는 큰 발전이 있었지만, 완벽하지는 않습니다. 원본 문서의 품질과 사용 중인 OCR 소프트웨어의 특정사항에 따라 정확성이 달라질 수 있습니다.

OCR은 필기체를 인식할 수 있나요?

OCR은 주로 인쇄된 텍스트에 대해 설계되었지만, 일부 고급 OCR 시스템은 분명하고 일관된 필기를 인식할 수도 있습니다. 그러나 일반적으로 필기체 인식은 개개인의 글씨 스타일에 있는 넓은 차이 때문에 덜 정확합니다.

OCR은 여러 언어를 처리할 수 있나요?

네, 많은 OCR 소프트웨어 시스템은 여러 언어를 인식할 수 있습니다. 그러나, 특정 언어가 사용 중인 소프트웨어에 의해 지원되는지 확인하는 것이 중요합니다.

OCR과 ICR의 차이점은 무엇인가요?

OCR은 광학 문자 인식을 의미하며 인쇄된 텍스트를 인식하는데 사용되는 반면, ICR은 Intelligent Character Recognition의 약자로서 필기 텍스트를 인식하는데 사용되는 더 고급스러운 기술입니다.

OCR은 모든 글꼴과 텍스트 크기와 함께 작동하나요?

OCR은 명확하고 읽기 쉬운 글꼴과 표준 텍스트 크기와 가장 잘 작동합니다. 다양한 글꼴과 크기로 작업할 수 있지만, 특이한 글꼴이나 매우 작은 텍스트 크기를 처리할 때 정확도가 떨어질 수 있습니다.

OCR 기술의 한계는 무엇인가요?

OCR은 해상도가 낮은 문서, 복잡한 폰트, 인쇄 상태가 좋지 않은 텍스트, 필기체, 텍스트와 방해되는 배경을 가진 문서 등에 대해 어려움을 겪을 수 있습니다. 또한, 많은 언어를 처리할 수 있지만 모든 언어를 완벽하게 커버하지는 않을 수 있습니다.

OCR은 컬러 텍스트 또는 컬러 배경을 스캔할 수 있나요?

네, OCR은 컬러 텍스트와 배경을 스캔할 수 있지만, 일반적으로 검은색 텍스트와 흰색 배경과 같은 높은 대비 색상 조합에서 더 효과적입니다. 텍스트와 배경색이 충분히 대비를 이루지 못할 때 정확성이 감소할 수 있습니다.

PDB 형식이란 무엇인가요?

Palm Database ImageViewer 형식

PDB(Protein Data Bank) 이미지 포맷은 JPEG나 PNG와 같은 전통적인 '이미지' 포맷이 아니라 단백질, 핵산, 복잡한 조립체에 대한 3차원 구조 정보를 저장하는 데이터 포맷입니다. PDB 포맷은 과학자들이 생물학적 거대 분자의 분자 구조를 시각화, 공유, 분석할 수 있기 때문에 생물정보학과 구조 생물학의 초석입니다. PDB 아카이브는 전 세계 단백질 데이터 뱅크(wwPDB)에서 관리하며, PDB 데이터를 전 세계 커뮤니티에서 자유롭고 공개적으로 사용할 수 있도록 합니다.

PDB 포맷은 분자 구조를 표현하는 표준화된 방법에 대한 필요성이 커지면서 1970년대 초에 처음 개발되었습니다. 그 이후로 다양한 분자 데이터를 수용하도록 진화했습니다. 이 포맷은 텍스트 기반이며 사람이 읽을 수도 있고 컴퓨터에서 처리할 수도 있습니다. 각각은 해당 레코드에 포함된 정보 유형을 지정하는 6자리 라인 식별자로 시작하는 일련의 레코드로 구성됩니다. 이러한 레코드는 원자 좌표, 연결성, 실험 데이터를 포함하여 구조에 대한 자세한 설명을 제공합니다.

일반적인 PDB 파일은 단백질이나 핵산 구조에 대한 메타데이터를 포함하는 헤더 섹션으로 시작합니다. 이 섹션에는 구조에 대한 간략한 설명을 제공하는 TITLE, 화학 성분을 나열하는 COMPND, 생물학적 분자의 기원을 설명하는 SOURCE와 같은 레코드가 포함됩니다. 헤더에는 또한 구조를 결정한 사람들의 이름을 나열하는 AUTHOR 레코드와 구조가 처음 설명된 문헌에 대한 인용을 제공하는 JOURNAL 레코드가 포함됩니다.

헤더에 이어 PDB 파일에는 SEQRES 레코드에 거대 분자의 주요 서열 정보가 포함됩니다. 이러한 레코드는 체인에 나타나는 대로 잔기(단백질의 아미노산, 핵산의 뉴클레오티드)의 서열을 나열합니다. 이 정보는 분자의 서열과 3차원 구조 간의 관계를 이해하는 데 중요합니다.

ATOM 레코드는 분자의 각 원자에 대한 좌표가 포함되어 있으므로 PDB 파일에서 가장 중요한 부분입니다. 각 ATOM 레코드에는 원자 순번, 원자 이름, 잔기 이름, 체인 식별자, 잔기 서열 번호, 옹스트롬 단위의 원자의 x, y, z 직교 좌표가 포함됩니다. ATOM 레코드를 통해 PyMOL, Chimera, VMD와 같은 특수 소프트웨어를 사용하여 시각화할 수 있는 분자의 3차원 구조를 재구성할 수 있습니다.

ATOM 레코드 외에도 금속 이온, 물 분자, 단백질이나 핵산에 결합된 다른 소분자와 같은 비표준 잔기나 리간드의 일부인 원자에 대한 HETATM 레코드가 있습니다. 이러한 레코드는 ATOM 레코드와 유사하게 포맷되지만 구조 내에서 거대 분자적이지 않은 성분을 식별하기 쉽도록 구별됩니다.

연결성 정보는 원자 간의 결합을 나열하는 CONECT 레코드에 제공됩니다. 이러한 레코드는 필수 사항이 아니며, 대부분의 분자 시각화 및 분석 소프트웨어는 원자 간 거리에 따라 연결성을 유추할 수 있습니다. 그러나 이러한 레코드는 특이한 결합이나 금속 배위 복합체가 있는 구조를 정의하는 데 중요하며, 이 경우 결합이 원자 좌표만으로는 명확하지 않을 수 있습니다.

PDB 포맷에는 또한 알파 나선과 베타 시트와 같은 이차 구조 요소를 지정하는 레코드가 포함됩니다. HELIX 및 SHEET 레코드는 이러한 구조를 식별하고 서열 내에서의 위치에 대한 정보를 제공합니다. 이 정보는 거대 분자의 폴딩 패턴을 이해하는 데 도움이 되며 비교 연구와 모델링에 필수적입니다.

구조를 결정하는 데 사용된 실험 데이터와 방법도 PDB 파일에 기록됩니다. EXPDTA와 같은 레코드는 실험 기법(예: X선 결정학, NMR 분광법)을 설명하는 반면, REMARK 레코드는 데이터 수집, 분해능, 정제 통계에 대한 세부 정보를 포함하여 구조에 대한 다양한 주석과 설명을 포함할 수 있습니다.

END 레코드는 PDB 파일의 끝을 나타냅니다. PDB 포맷이 널리 사용되지만 오래되었고 고정된 열 너비 포맷으로 인해 한계가 있다는 점에 유의하는 것이 중요합니다. 이로 인해 원자가 많거나 더 높은 정밀도가 필요한 최신 구조에 문제가 발생할 수 있습니다. 이러한 한계를 해결하기 위해 거대 분자 구조를 표현하기 위한 더욱 유연하고 확장 가능한 프레임워크를 제공하는 mmCIF(거대 분자 결정학 정보 파일)라는 업데이트된 포맷이 개발되었습니다.

mmCIF 포맷이 개발되었음에도 불구하고 PDB 포맷은 단순성과 이를 지원하는 수많은 소프트웨어 도구로 인해 여전히 인기가 있습니다. 연구자들은 종종 필요와 사용하는 도구에 따라 PDB와 mmCIF 포맷을 변환합니다. PDB 포맷의 수명은 구조 생물학 분야에서의 근본적인 역할과 복잡한 구조 정보를 비교적 간단한 방식으로 전달하는 효율성을 증명합니다.

PDB 파일을 사용하려면 과학자들은 다양한 계산 도구를 사용합니다. 분자 시각화 소프트웨어를 사용하면 사용자가 PDB 파일을 로드하고 3차원으로 구조를 보고, 회전하고, 확대 및 축소하고, 원자의 공간적 배열을 더 잘 이해하기 위해 다양한 렌더링 스타일을 적용할 수 있습니다. 이러한 도구는 종종 거리, 각도, 이면각 측정, 분자 동역학 시뮬레이션, 구조 내 또는 잠재적 리간드와의 상호 작용 분석과 같은 추가 기능을 제공합니다.

PDB 포맷은 또한 계산 생물학과 약물 발견에서 중요한 역할을 합니다. PDB 파일의 구조 정보는 동족 모델링에 사용되며, 여기서 관련 단백질의 알려진 구조를 사용하여 관심 단백질의 구조를 예측합니다. 구조 기반 약물 설계에서 표적 단백질의 PDB 파일은 잠재적 약물 화합물을 선별하고 최적화하는 데 사용되며, 이는 실험실에서 합성 및 테스트할 수 있습니다.

PDB 포맷의 영향은 개별 연구 프로젝트를 넘어섭니다. 단백질 데이터 뱅크 자체는 현재 150,000개 이상의 구조를 포함하는 저장소이며, 새로운 구조가 결정되고 저장됨에 따라 계속해서 성장합니다. 이 데이터베이스는 학생들이 생물학적 거대 분자의 구조를 탐구하고 배우는 데 도움이 되는 교육에 귀중한 자료입니다. 또한 지난 수십 년간 구조 생물학의 진전에 대한 역사적 기록으로도 사용됩니다.

결론적으로 PDB 이미지 포맷은 생물학적 거대 분자의 3차원 구조를 저장, 공유, 분석하는 수단을 제공하는 구조 생물학 분야의 중요한 도구입니다. 몇 가지 한계가 있지만 널리 채택되고 사용을 위한 풍부한 도구 생태계가 개발되어 가까운 미래에도 핵심 포맷으로 남을 것입니다. 구조 생물학 분야가 계속해서 진화함에 따라 PDB 포맷은 mmCIF와 같은 더욱 고급 포맷으로 보완될 가능성이 높지만, 현대 구조 생물학의 기반이 되는 유산은 지속될 것입니다.

지원하는 형식

AAI.aai

AAI Dune 이미지

AI.ai

Adobe Illustrator CS2

AVIF.avif

AV1 이미지 파일 형식

BAYER.bayer

원시 Bayer 이미지

BMP.bmp

Microsoft Windows 비트맵 이미지

CIN.cin

Cineon 이미지 파일

CLIP.clip

이미지 클립 마스크

CMYK.cmyk

원시 청색, 마젠타, 노란색, 검정색 샘플

CUR.cur

Microsoft 아이콘

DCX.dcx

ZSoft IBM PC 다중 페이지 Paintbrush

DDS.dds

Microsoft DirectDraw 표면

DPX.dpx

SMTPE 268M-2003 (DPX 2.0) 이미지

DXT1.dxt1

Microsoft DirectDraw 표면

EPDF.epdf

캡슐화된 휴대용 문서 형식

EPI.epi

Adobe 캡슐화된 포스트스크립트 교환 형식

EPS.eps

Adobe 캡슐화된 포스트스크립트

EPSF.epsf

Adobe 캡슐화된 포스트스크립트

EPSI.epsi

Adobe 캡슐화된 포스트스크립트 교환 형식

EPT.ept

TIFF 미리보기가 포함된 캡슐화된 포스트스크립트

EPT2.ept2

TIFF 미리보기가 포함된 캡슐화된 포스트스크립트 레벨 II

EXR.exr

고 다이나믹 레인지 (HDR) 이미지

FF.ff

Farbfeld

FITS.fits

유연한 이미지 전송 시스템

GIF.gif

CompuServe 그래픽 교환 형식

HDR.hdr

고 다이나믹 레인지 이미지

HEIC.heic

고효율 이미지 컨테이너

HRZ.hrz

슬로우 스캔 텔레비전

ICO.ico

Microsoft 아이콘

ICON.icon

Microsoft 아이콘

J2C.j2c

JPEG-2000 코드 스트림

J2K.j2k

JPEG-2000 코드 스트림

JNG.jng

JPEG Network Graphics

JP2.jp2

JPEG-2000 파일 형식 구문

JPE.jpe

Joint Photographic Experts Group JFIF 형식

JPEG.jpeg

Joint Photographic Experts Group JFIF 형식

JPG.jpg

Joint Photographic Experts Group JFIF 형식

JPM.jpm

JPEG-2000 파일 형식 구문

JPS.jps

Joint Photographic Experts Group JPS 형식

JPT.jpt

JPEG-2000 파일 형식 구문

JXL.jxl

JPEG XL 이미지

MAP.map

다중 해상도 Seamless Image Database (MrSID)

MAT.mat

MATLAB 레벨 5 이미지 형식

PAL.pal

Palm 픽스맵

PALM.palm

Palm 픽스맵

PAM.pam

일반적인 2차원 비트맵 형식

PBM.pbm

휴대용 비트맵 형식 (흑백)

PCD.pcd

Photo CD

PCT.pct

Apple Macintosh QuickDraw/PICT

PCX.pcx

ZSoft IBM PC Paintbrush

PDB.pdb

Palm Database ImageViewer 형식

PDF.pdf

휴대용 문서 형식

PDFA.pdfa

휴대용 문서 아카이브 형식

PFM.pfm

휴대용 부동 소수점 형식

PGM.pgm

휴대용 그레이맵 형식 (그레이 스케일)

PGX.pgx

JPEG 2000 압축되지 않은 형식

PICT.pict

Apple Macintosh QuickDraw/PICT

PJPEG.pjpeg

Joint Photographic Experts Group JFIF 형식

PNG.png

휴대용 네트워크 그래픽

PNG00.png00

원본 이미지에서 비트 깊이, 색상 유형 상속

PNG24.png24

불투명 또는 이진 투명 24비트 RGB (zlib 1.2.11)

PNG32.png32

불투명 또는 이진 투명 32비트 RGBA

PNG48.png48

불투명 또는 이진 투명 48비트 RGB

PNG64.png64

불투명 또는 이진 투명 64비트 RGBA

PNG8.png8

불투명 또는 이진 투명 8비트 인덱스

PNM.pnm

휴대용 anymap

PPM.ppm

휴대용 픽스맵 형식 (색상)

PS.ps

Adobe PostScript 파일

PSB.psb

Adobe Large Document 형식

PSD.psd

Adobe Photoshop 비트맵

RGB.rgb

Raw red, green, and blue 샘플

RGBA.rgba

Raw red, green, blue, and alpha 샘플

RGBO.rgbo

Raw red, green, blue, and opacity 샘플

SIX.six

DEC SIXEL 그래픽 형식

SUN.sun

Sun Rasterfile

SVG.svg

확장 가능한 벡터 그래픽

TIFF.tiff

태그가 지정된 이미지 파일 형식

VDA.vda

Truevision Targa 이미지

VIPS.vips

VIPS 이미지

WBMP.wbmp

무선 비트맵 (레벨 0) 이미지

WEBP.webp

WebP 이미지 형식

YUV.yuv

CCIR 601 4:1:1 또는 4:2:2

자주 묻는 질문

어떻게 작동하나요?

이 변환기는 전적으로 브라우저에서 실행됩니다. 파일을 선택하면 메모리로 읽어와 선택한 형식으로 변환됩니다. 그런 다음 변환된 파일을 다운로드할 수 있습니다.

파일을 변환하는 데 얼마나 걸립니까?

변환은 즉시 시작되며 대부분의 파일은 1초 이내에 변환됩니다. 파일이 크면 더 오래 걸릴 수 있습니다.

내 파일은 어떻게 되나요?

파일은 서버에 업로드되지 않습니다. 브라우저에서 변환된 다음 변환된 파일이 다운로드됩니다. 우리는 귀하의 파일을 절대 보지 않습니다.

어떤 파일 형식을 변환할 수 있나요?

JPEG, PNG, GIF, WebP, SVG, BMP, TIFF 등을 포함한 모든 이미지 형식 간의 변환을 지원합니다.

비용은 얼마인가요?

이 변환기는 완전히 무료이며 항상 무료입니다. 브라우저에서 실행되기 때문에 서버 비용을 지불할 필요가 없으므로 비용을 청구할 필요가 없습니다.

한 번에 여러 파일을 변환할 수 있나요?

예! 한 번에 원하는 만큼 많은 파일을 변환할 수 있습니다. 추가할 때 여러 파일을 선택하기만 하면 됩니다.