背景の削除は、被写体を周囲から分離し、透明な背景に配置したり、 シーンを交換したり、新しいデザインに合成したりできるようにします。内部では、 アルファマッ ト(ピクセルごとの不透明度0〜1)を推定し、前景を何か他のものの上にアルファ合成しています。これはポーター-ダフの数学であり、「フリンジ」や ストレートアルファ対乗算済みアルファのようなおなじみの落とし穴の原因です。乗算済みアルファとリニアカラーに関する実践的なガイダンスについては、 MicrosoftのWin2Dノート、 Søren Sandmann、および Lomontのリニアブレンドに関する記事を参照してください。
キャプチャを制御できる場合は、背景を単色(多くの場合緑)で塗りつぶし、その色相をキーアウトします。 これは高速で、映画や放送で実証済みであり、ビデオに最適です。トレードオフは照明とワードローブです。 色付きの光がエッジ(特に髪)にこぼれるため、デスピルツールを使用して汚染を中和します。 優れた入門書には、Nukeのドキュメント、 Mixing Light、および実践的な Fusionデモが含まれます。
背景が乱雑な単一の画像の場合、インタラクティブアルゴリズムには、ユーザーからのいくつかのヒント(たとえば、緩い 長方形や落書き)が必要であり、鮮明なマスクに収束します。標準的な方法は GrabCut (本の章)であり、前景/背景のカラーモデルを学習し、グラフカットを繰り返し使用してそれらを分離します。GIMPの前景選択では、 SIOX (ImageJプラグイン)に基づいた同様のアイデアが見られます。
マッティングは、かすかな境界(髪、毛皮、煙、ガラス)での部分的な透明度を解決します。クラシックな クローズドフォームマッティングは、 トライマップ(明確な前景/明確な背景/不明)を取得し、強力なエッジ忠実度でアルファの線形システムを解きます。現代の ディープイメージマッティングは、 Adobe Composition-1Kデータセット(MMEditingドキュメント)でニューラルネットワークをトレーニングし、 SAD、MSE、Gradient、Connectivity(ベンチマークの説明)などのメトリックで評価されます。
関連するセグメンテーション作業も役立ちます: DeepLabv3+は、エンコーダー-デコーダーとatrous畳み込みで境界を洗練します (PDF); Mask R-CNNは、インスタンスごとのマスクを提供します (PDF); そして SAM(Segment Anything)は、 なじみのない画像に対してゼロショットマスクを生成するプロンプト可能な基盤モデルです。
学術研究では、Composition-1Kに関するSAD、MSE、Gradient、およびConnectivityエラーが報告されています。モデルを選択する場合は、これらのメトリックを探してください (メトリックの定義; Background Mattingのメトリックセクション)。 ポートレート/ビデオの場合、MODNetと Background Matting V2は強力です。一般的な「顕著なオブジェクト」画像の場合、 U2-Netは堅実なベースラインです。困難な透明度の場合、 FBAはよりクリーンになる可能性があります。
このコンバーターはブラウザ内で完全に動作します。ファイルを選択すると、メモリに読み込まれ、選択したフォーマットに変換されます。その後、変換されたファイルをダウンロードできます。
変換は瞬時に開始され、ほとんどのファイルは1秒以内に変換されます。大きなファイルの場合、時間がかかる場合があります。
ファイルは決してサーバにアップロードされません。ブラウザ内で変換され、変換されたファイルがダウンロードされます。ファイルは見られません。
画像フォーマット間の変換すべてに対応しています。JPEG、PNG、GIF、WebP、SVG、BMP、TIFFなどです。
このコンバーターは完全に無料で、永久に無料のままです。ブラウザ内で動作するため、サーバを用意する必要がないので、料金を請求する必要がありません。
はい、一度に複数のファイルを変換できます。追加時に複数のファイルを選択してください。