Il Riconoscimento Ottico dei Caratteri (OCR) trasforma le immagini di testo—scansioni, foto da smartphone, PDF—in stringhe leggibili dalla macchina e, sempre più, in dati strutturati. L'OCR moderno è una pipeline che pulisce un'immagine, trova il testo, lo legge ed esporta metadati ricchi in modo che i sistemi a valle possano cercare, indicizzare o estrarre campi. Due standard di output ampiamente utilizzati sono hOCR, un microformato HTML per testo e layout, e ALTO XML, uno schema orientato a biblioteche/archivi; entrambi conservano posizioni, ordine di lettura e altri spunti di layout e sono supportati da motori popolari come Tesseract.
Pre-elaborazione. La qualità dell'OCR inizia con la pulizia dell'immagine: conversione in scala di grigi, denoising, sogliatura (binarizzazione) e raddrizzamento. I tutorial canonici di OpenCV coprono la sogliatura globale, adattiva e di Otsu —punti fermi per documenti con illuminazione non uniforme o istogrammi bimodali. Quando l'illuminazione varia all'interno di una pagina (pensa agli scatti del telefono), i metodi adattivi spesso superano una singola soglia globale; Otsu sceglie automaticamente una soglia analizzando l'istogramma. La correzione dell'inclinazione è altrettanto importante: il raddrizzamento basato su Hough (Trasformata di Hough) abbinato alla binarizzazione di Otsu è una ricetta comune ed efficace nelle pipeline di pre-elaborazione di produzione.
Rilevamento vs. riconoscimento. L'OCR è tipicamente suddiviso in rilevamento del testo (dov'è il testo?) e riconoscimento del testo (cosa dice?). Nelle scene naturali e in molte scansioni, i rilevatori completamente convoluzionali come EAST prevedono in modo efficiente quadrilateri a livello di parola o riga senza pesanti fasi di proposta e sono implementati in toolkit comuni (ad es. tutorial sul rilevamento del testo di OpenCV). Su pagine complesse (giornali, moduli, libri), la segmentazione di righe/regioni e l'inferenza dell'ordine di lettura sono importanti:Kraken implementa la segmentazione tradizionale di zone/righe e la segmentazione neurale della linea di base, con supporto esplicito per diversi script e direzioni (LTR/RTL/verticale).
Modelli di riconoscimento. Il classico cavallo di battaglia open-source Tesseract (reso open-source da Google, con radici in HP) si è evoluto da un classificatore di caratteri in un riconoscitore di sequenze basato su LSTM e può emettere PDF ricercabili, output compatibili con hOCR/ALTOe altro dalla CLI. I riconoscitori moderni si basano sulla modellazione di sequenze senza caratteri pre-segmentati. Connectionist Temporal Classification (CTC) rimane fondamentale, imparando gli allineamenti tra le sequenze di feature di input e le stringhe di etichette di output; è ampiamente utilizzato nelle pipeline di scrittura a mano e di testo di scena.
Negli ultimi anni, i Transformer hanno rimodellato l'OCR. TrOCR utilizza un encoder Vision Transformer più un decoder Text Transformer, addestrato su grandi corpora sintetici e poi messo a punto su dati reali, con ottime prestazioni su benchmark di testo stampato, scritto a mano e di scena (vedi anche documentazione di Hugging Face). In parallelo, alcuni sistemi eludono l'OCR per la comprensione a valle: Donut (Document Understanding Transformer) è un encoder-decoder senza OCR che produce direttamente risposte strutturate (come JSON chiave-valore) da immagini di documenti (repo, scheda del modello), evitando l'accumulo di errori quando un passaggio OCR separato alimenta un sistema IE.
Se si desidera una lettura del testo "batterie incluse" su molti script, EasyOCR offre una semplice API con oltre 80 modelli linguistici, restituendo riquadri, testo e confidenze, utile per prototipi e script non latini. Per i documenti storici, Kraken brilla con la segmentazione della linea di base e l'ordine di lettura consapevole dello script; per un addestramento flessibile a livello di riga, Calamari si basa sulla discendenza di Ocropy (Ocropy) con riconoscitori (multi-)LSTM+CTC e una CLI for la messa a punto di modelli personalizzati.
La generalizzazione dipende dai dati. Per la scrittura a mano, il Database di scrittura a mano IAM fornisce frasi in inglese diverse per scrittore per l'addestramento e la valutazione; è un set di riferimento di lunga data per il riconoscimento di righe e parole. Per il testo di scena, COCO-Text ha stratificato annotazioni estese su MS-COCO, con etichette per stampato/scritto a mano, leggibile/illeggibile, script e trascrizioni complete (vedi anche la pagina del progetto originale). Il campo si basa anche pesantemente sul pre-addestramento sintetico: SynthText in the Wild renderizza il testo in fotografie con geometria e illuminazione realistiche, fornendo enormi volumi di dati per pre-addestrare rilevatori e riconoscitori (riferimento codice e dati).
Le competizioni sotto l'ombrello Robust Reading di ICDAR mantengono la valutazione fondata. I compiti recenti enfatizzano il rilevamento/lettura end-to-end e includono il collegamento di parole in frasi, con il codice ufficiale che riporta precisione/richiamo/F-score, intersection-over-union (IoU) e metriche di distanza di modifica a livello di carattere, rispecchiando ciò che i professionisti dovrebbero monitorare.
L'OCR raramente termina con testo semplice. Archivi e biblioteche digitali preferiscono ALTO XML perché codifica il layout fisico (blocchi/righe/parole con coordinate) insieme al contenuto, e si abbina bene con il packaging METS. Il hOCR microformato, al contrario, incorpora la stessa idea in HTML/CSS usando classi come ocr_line e ocrx_word, rendendo facile visualizzare, modificare e trasformare con strumenti web. Tesseract espone entrambi, ad es. generando hOCR o PDF ricercabili direttamente dalla CLI (guida all'output PDF); wrapper Python come pytesseract aggiungono convenienza. Esistono convertitori per tradurre tra hOCR e ALTO quando i repository hanno standard di ingestione fissi —vedi questo elenco curato di strumenti per formati di file OCR.
La tendenza più forte è la convergenza: rilevamento, riconoscimento, modellazione del linguaggio e persino la decodifica specifica del compito si stanno fondendo in stack Transformer unificati. Il pre-addestramento su grandi corpora sintetici rimane un moltiplicatore di forza. I modelli senza OCR competeranno aggressivamente ovunque l'obiettivo siano output strutturati piuttosto che trascrizioni letterali. Aspettatevi anche implementazioni ibride: un rilevatore leggero più un riconoscitore in stile TrOCR per testo lungo, e un modello in stile Donut per moduli e ricevute.
Tesseract (GitHub) · Documentazione di Tesseract · Specifiche hOCR · Sfondo ALTO · Rilevatore EAST · Rilevamento del testo OpenCV · TrOCR · Donut · COCO-Text · SynthText · Kraken · Calamari OCR · ICDAR RRC · pytesseract · Scrittura a mano IAM · Strumenti per formati di file OCR · EasyOCR
L'Optical Character Recognition (OCR) è una tecnologia utilizzata per convertire vari tipi di documenti, come documenti cartacei scansionati, file PDF o immagini catturate da una fotocamera digitale, in dati modificabili e ricercabili.
L'OCR funziona analizzando l'immagine o il documento in ingresso, segmentando l'immagine in singoli caratteri, e confrontando ciascun carattere con un database di forme carattere utilizzando il riconoscimento di pattern o il riconoscimento delle caratteristiche.
L'OCR viene utilizzato in vari settori e applicazioni, tra cui la digitalizzazione di documenti stampati, l'attivazione di servizi di testo in voce, l'automazione dei processi di inserimento dati, e l'aiuto agli utenti con problemi di vista a interagire in modo più efficace con il testo.
Nonostante ci siano stati notevoli progressi nella tecnologia OCR, non è infallibile. L'accuratezza può variare a seconda della qualità del documento originale e delle specifiche del software OCR utilizzato.
Sebbene l'OCR sia principalmente progettato per il testo stampato, alcuni sistemi OCR avanzati sono anche in grado di riconoscere la scrittura a mano chiara e coerente. Tuttavia, il riconoscimento della scrittura a mano è generalmente meno preciso a causa della grande varietà di stili di scrittura individuali.
Sì, molti sistemi software OCR possono riconoscere più lingue. Tuttavia, è importante assicurarsi che la lingua specifica sia supportata dal software che si utilizza.
L'OCR sta per Optical Character Recognition ed è usato per riconoscere il testo stampato, mentre l'ICR, o Intelligent Character Recognition, è più avanzato ed è usato per riconoscere il testo scritto a mano.
L'OCR funziona meglio con font chiari, facilmente leggibili e dimensioni standard del testo. Anche se può lavorare con vari font e dimensioni, l'accuratezza tende a diminuire quando si tratta di font insoliti o dimensioni del testo molto piccole.
L'OCR può avere difficoltà con documenti a bassa risoluzione, font complessi, testi stampati male, scrittura a mano, e documenti con sfondi che interferiscono con il testo. Inoltre, anche se può lavorare con molte lingue, potrebbe non coprire ogni lingua perfettamente.
Sì, l'OCR può eseguire la scansione di testi colorati e sfondi colorati, sebbene generalmente sia più efficace con combinazioni di colori ad alto contrasto, come il testo nero su sfondo bianco. L'accuratezza può diminuire quando il colore del testo e dello sfondo non ha un contrasto sufficiente.
JPEG, che sta per Joint Photographic Experts Group, è un metodo comunemente utilizzato di compressione con perdita per immagini digitali, in particolare per quelle immagini prodotte dalla fotografia digitale. Il grado di compressione può essere regolato, consentendo un compromesso selezionabile tra dimensione di archiviazione e qualità dell'immagine. JPEG in genere raggiunge una compressione 10:1 con una perdita di qualità dell'immagine poco percettibile.
L'algoritmo di compressione JPEG è al centro dello standard JPEG. Il processo inizia con un'immagine digitale convertita dal suo tipico spazio colore RGB in uno spazio colore diverso noto come YCbCr. Lo spazio colore YCbCr separa l'immagine in luminanza (Y), che rappresenta i livelli di luminosità, e crominanza (Cb e Cr), che rappresentano le informazioni sul colore. Questa separazione è vantaggiosa perché l'occhio umano è più sensibile alle variazioni di luminosità rispetto al colore, consentendo alla compressione di sfruttare questo vantaggio comprimendo le informazioni sul colore più della luminanza.
Una volta che l'immagine è nello spazio colore YCbCr, il passo successivo nel processo di compressione JPEG è il downsampling dei canali di crominanza. Il downsampling riduce la risoluzione delle informazioni di crominanza, che in genere non influisce in modo significativo sulla qualità percepita dell'immagine, a causa della minore sensibilità dell'occhio umano ai dettagli del colore. Questo passaggio è facoltativo e può essere regolato a seconda del bilanciamento desiderato tra qualità dell'immagine e dimensione del file.
Dopo il downsampling, l'immagine viene divisa in blocchi, in genere di dimensioni 8x8 pixel. Ogni blocco viene quindi elaborato separatamente. Il primo passo nell'elaborazione di ciascun blocco è applicare la trasformata discreta del coseno (DCT). La DCT è un'operazione matematica che trasforma i dati del dominio spaziale (i valori dei pixel) nel dominio della frequenza. Il risultato è una matrice di coefficienti di frequenza che rappresentano i dati del blocco immagine in termini dei suoi componenti di frequenza spaziale.
I coefficienti di frequenza risultanti dalla DCT vengono quindi quantizzati. La quantizzazione è il processo di mappatura di un ampio insieme di valori di input in un insieme più piccolo: nel caso di JPEG, ciò significa ridurre la precisione dei coefficienti di frequenza. È qui che si verifica la parte con perdita della compressione, poiché alcune informazioni sull'immagine vengono scartate. Il passaggio di quantizzazione è controllato da una tabella di quantizzazione, che determina quanta compressione viene applicata a ciascun componente di frequenza. Le tabelle di quantizzazione possono essere regolate per favorire una maggiore qualità dell'immagine (meno compressione) o dimensioni del file più piccole (più compressione).
Dopo la quantizzazione, i coefficienti vengono disposti in un ordine a zig-zag, partendo dall'angolo in alto a sinistra e seguendo uno schema che dà priorità ai componenti di frequenza più bassa rispetto a quelli di frequenza più alta. Ciò perché i componenti di frequenza più bassa (che rappresentano le parti più uniformi dell'immagine) sono più importanti per l'aspetto generale rispetto ai componenti di frequenza più alta (che rappresentano i dettagli e i bordi più fini).
Il passo successivo nel processo di compressione JPEG è la codifica entropica, che è un metodo di compressione senza perdita. La forma più comune di codifica entropica utilizzata in JPEG è la codifica Huffman, sebbene anche la codifica aritmetica sia un'opzione. La codifica Huffman funziona assegnando codici più brevi a occorrenze più frequenti e codici più lunghi a occorrenze meno frequenti. Poiché l'ordinamento a zig-zag tende a raggruppare insieme coefficienti di frequenza simili, aumenta l'efficienza della codifica Huffman.
Una volta completata la codifica entropica, i dati compressi vengono archiviati in un formato file conforme allo standard JPEG. Questo formato file include un'intestazione che contiene informazioni sull'immagine, come le sue dimensioni e le tabelle di quantizzazione utilizzate, seguite dai dati dell'immagine codificati in Huffman. Il formato file supporta anche l'inclusione di metadati, come i dati EXIF, che possono contenere informazioni sulle impostazioni della fotocamera utilizzate per scattare la fotografia, la data e l'ora in cui è stata scattata e altri dettagli pertinenti.
Quando viene aperta un'immagine JPEG, il processo di decompressione inverte essenzialmente i passaggi di compressione. I dati codificati in Huffman vengono decodificati, i coefficienti di frequenza quantizzati vengono dequantizzati utilizzando le stesse tabelle di quantizzazione utilizzate durante la compressione e la trasformata discreta del coseno inversa (IDCT) viene applicata a ciascun blocco per convertire i dati del dominio della frequenza nuovamente in valori di pixel del dominio spaziale.
I processi di dequantizzazione e IDCT introducono alcuni errori dovuti alla natura con perdita della compressione, motivo per cui JPEG non è l'ideale per immagini che subiranno più modifiche e nuovi salvataggi. Ogni volta che un'immagine JPEG viene salvata, passa nuovamente attraverso il processo di compressione e vengono perse ulteriori informazioni sull'immagine. Ciò può portare a un evidente degrado della qualità dell'immagine nel tempo, un fenomeno noto come "perdita di generazione".
Nonostante la natura con perdita della compressione JPEG, rimane un formato immagine popolare grazie alla sua flessibilità ed efficienza. Le immagini JPEG possono avere dimensioni di file molto piccole, il che le rende ideali per l'uso sul Web, dove la larghezza di banda e i tempi di caricamento sono considerazioni importanti. Inoltre, lo standard JPEG include una modalità progressiva, che consente di codificare un'immagine in modo tale da poter essere decodificata in più passaggi, ogni passaggio migliora la risoluzione dell'immagine. Ciò è particolarmente utile per le immagini Web, poiché consente di visualizzare rapidamente una versione di bassa qualità dell'immagine, con la qualità che migliora man mano che vengono scaricati più dati.
JPEG presenta anche alcune limitazioni e non è sempre la scelta migliore per tutti i tipi di immagini. Ad esempio, non è adatto per immagini con bordi netti o testo ad alto contrasto, poiché la compressione può creare artefatti evidenti attorno a queste aree. Inoltre, JPEG non supporta la trasparenza, che è una funzionalità fornita da altri formati come PNG e GIF.
Per affrontare alcune delle limitazioni dello standard JPEG originale, sono stati sviluppati nuovi formati, come JPEG 2000 e JPEG XR. Questi formati offrono una migliore efficienza di compressione, supporto per profondità di bit più elevate e funzionalità aggiuntive come trasparenza e compressione senza perdita. Tuttavia, non hanno ancora raggiunto lo stesso livello di adozione diffusa del formato JPEG originale.
In conclusione, il formato immagine JPEG è un complesso equilibrio tra matematica, psicologia visiva umana e informatica. Il suo uso diffuso è una testimonianza della sua efficacia nel ridurre le dimensioni dei file mantenendo un livello di qualità dell'immagine accettabile per la maggior parte delle applicazioni. Comprendere gli aspetti tecnici di JPEG può aiutare gli utenti a prendere decisioni informate su quando utilizzare questo formato e su come ottimizzare le proprie immagini per il bilanciamento tra qualità e dimensione del file che meglio si adatta alle proprie esigenze.
Questo convertitore funziona interamente nel tuo browser. Quando selezioni un file, viene letto in memoria e convertito nel formato selezionato. Puoi quindi scaricare il file convertito.
Le conversioni iniziano immediatamente e la maggior parte dei file viene convertita in meno di un secondo. I file più grandi potrebbero richiedere più tempo.
I tuoi file non vengono mai caricati sui nostri server. Vengono convertiti nel tuo browser e il file convertito viene quindi scaricato. Non vediamo mai i tuoi file.
Supportiamo la conversione tra tutti i formati di immagine, inclusi JPEG, PNG, GIF, WebP, SVG, BMP, TIFF e altro.
Questo convertitore è completamente gratuito e sarà sempre gratuito. Poiché funziona nel tuo browser, non dobbiamo pagare per i server, quindi non dobbiamo farti pagare.
Sì! Puoi convertire quanti file vuoi contemporaneamente. Basta selezionare più file quando li aggiungi.