OCR di ogni JP2

Trascina una foto, una scansione o un PDF (fino a 2.5GB). Estraiamo il testo direttamente nel tuo browser — gratuitamente, illimitatamente e i tuoi file non lasciano mai il tuo dispositivo.

Privato e sicuro

Tutto accade nel tuo browser. I tuoi file non toccano mai i nostri server.

Velocissimo

Nessun caricamento, nessuna attesa. Converti nel momento in cui rilasci un file.

Realmente gratuito

Nessun account richiesto. Nessun costo nascosto. Nessun trucco sulle dimensioni dei file.

Il Riconoscimento Ottico dei Caratteri (OCR) trasforma le immagini di testo—scansioni, foto da smartphone, PDF—in stringhe leggibili dalla macchina e, sempre più, in dati strutturati. L'OCR moderno è una pipeline che pulisce un'immagine, trova il testo, lo legge ed esporta metadati ricchi in modo che i sistemi a valle possano cercare, indicizzare o estrarre campi. Due standard di output ampiamente utilizzati sono hOCR, un microformato HTML per testo e layout, e ALTO XML, uno schema orientato a biblioteche/archivi; entrambi conservano posizioni, ordine di lettura e altri spunti di layout e sono supportati da motori popolari come Tesseract.

Un rapido tour della pipeline

Pre-elaborazione. La qualità dell'OCR inizia con la pulizia dell'immagine: conversione in scala di grigi, denoising, sogliatura (binarizzazione) e raddrizzamento. I tutorial canonici di OpenCV coprono la sogliatura globale, adattiva e di Otsu —punti fermi per documenti con illuminazione non uniforme o istogrammi bimodali. Quando l'illuminazione varia all'interno di una pagina (pensa agli scatti del telefono), i metodi adattivi spesso superano una singola soglia globale; Otsu sceglie automaticamente una soglia analizzando l'istogramma. La correzione dell'inclinazione è altrettanto importante: il raddrizzamento basato su Hough (Trasformata di Hough) abbinato alla binarizzazione di Otsu è una ricetta comune ed efficace nelle pipeline di pre-elaborazione di produzione.

Rilevamento vs. riconoscimento. L'OCR è tipicamente suddiviso in rilevamento del testo (dov'è il testo?) e riconoscimento del testo (cosa dice?). Nelle scene naturali e in molte scansioni, i rilevatori completamente convoluzionali come EAST prevedono in modo efficiente quadrilateri a livello di parola o riga senza pesanti fasi di proposta e sono implementati in toolkit comuni (ad es. tutorial sul rilevamento del testo di OpenCV). Su pagine complesse (giornali, moduli, libri), la segmentazione di righe/regioni e l'inferenza dell'ordine di lettura sono importanti:Kraken implementa la segmentazione tradizionale di zone/righe e la segmentazione neurale della linea di base, con supporto esplicito per diversi script e direzioni (LTR/RTL/verticale).

Modelli di riconoscimento. Il classico cavallo di battaglia open-source Tesseract (reso open-source da Google, con radici in HP) si è evoluto da un classificatore di caratteri in un riconoscitore di sequenze basato su LSTM e può emettere PDF ricercabili, output compatibili con hOCR/ALTOe altro dalla CLI. I riconoscitori moderni si basano sulla modellazione di sequenze senza caratteri pre-segmentati. Connectionist Temporal Classification (CTC) rimane fondamentale, imparando gli allineamenti tra le sequenze di feature di input e le stringhe di etichette di output; è ampiamente utilizzato nelle pipeline di scrittura a mano e di testo di scena.

Negli ultimi anni, i Transformer hanno rimodellato l'OCR. TrOCR utilizza un encoder Vision Transformer più un decoder Text Transformer, addestrato su grandi corpora sintetici e poi messo a punto su dati reali, con ottime prestazioni su benchmark di testo stampato, scritto a mano e di scena (vedi anche documentazione di Hugging Face). In parallelo, alcuni sistemi eludono l'OCR per la comprensione a valle: Donut (Document Understanding Transformer) è un encoder-decoder senza OCR che produce direttamente risposte strutturate (come JSON chiave-valore) da immagini di documenti (repo, scheda del modello), evitando l'accumulo di errori quando un passaggio OCR separato alimenta un sistema IE.

Motori e librerie

Se si desidera una lettura del testo "batterie incluse" su molti script, EasyOCR offre una semplice API con oltre 80 modelli linguistici, restituendo riquadri, testo e confidenze, utile per prototipi e script non latini. Per i documenti storici, Kraken brilla con la segmentazione della linea di base e l'ordine di lettura consapevole dello script; per un addestramento flessibile a livello di riga, Calamari si basa sulla discendenza di Ocropy (Ocropy) con riconoscitori (multi-)LSTM+CTC e una CLI for la messa a punto di modelli personalizzati.

Set di dati e benchmark

La generalizzazione dipende dai dati. Per la scrittura a mano, il Database di scrittura a mano IAM fornisce frasi in inglese diverse per scrittore per l'addestramento e la valutazione; è un set di riferimento di lunga data per il riconoscimento di righe e parole. Per il testo di scena, COCO-Text ha stratificato annotazioni estese su MS-COCO, con etichette per stampato/scritto a mano, leggibile/illeggibile, script e trascrizioni complete (vedi anche la pagina del progetto originale). Il campo si basa anche pesantemente sul pre-addestramento sintetico: SynthText in the Wild renderizza il testo in fotografie con geometria e illuminazione realistiche, fornendo enormi volumi di dati per pre-addestrare rilevatori e riconoscitori (riferimento codice e dati).

Le competizioni sotto l'ombrello Robust Reading di ICDAR mantengono la valutazione fondata. I compiti recenti enfatizzano il rilevamento/lettura end-to-end e includono il collegamento di parole in frasi, con il codice ufficiale che riporta precisione/richiamo/F-score, intersection-over-union (IoU) e metriche di distanza di modifica a livello di carattere, rispecchiando ciò che i professionisti dovrebbero monitorare.

Formati di output e uso a valle

L'OCR raramente termina con testo semplice. Archivi e biblioteche digitali preferiscono ALTO XML perché codifica il layout fisico (blocchi/righe/parole con coordinate) insieme al contenuto, e si abbina bene con il packaging METS. Il hOCR microformato, al contrario, incorpora la stessa idea in HTML/CSS usando classi come ocr_line e ocrx_word, rendendo facile visualizzare, modificare e trasformare con strumenti web. Tesseract espone entrambi, ad es. generando hOCR o PDF ricercabili direttamente dalla CLI (guida all'output PDF); wrapper Python come pytesseract aggiungono convenienza. Esistono convertitori per tradurre tra hOCR e ALTO quando i repository hanno standard di ingestione fissi —vedi questo elenco curato di strumenti per formati di file OCR.

Guida pratica

  • Inizia con i dati e la pulizia. Se le tue immagini sono foto di telefono o scansioni di qualità mista, investi nella sogliatura (adattiva e Otsu) e nel raddrizzamento (Hough) prima di qualsiasi messa a punto del modello. Spesso otterrai di più da una robusta ricetta di pre-elaborazione che dalla sostituzione dei riconoscitori.
  • Scegli il rilevatore giusto. Per le pagine scansionate con colonne regolari, un segmentatore di pagine (zone → righe) può essere sufficiente; per le immagini naturali, i rilevatori a scatto singolo come EAST sono baseline forti e si collegano a molti toolkit (esempio OpenCV).
  • Scegli un riconoscitore che corrisponda al tuo testo. Per il latino stampato, Tesseract (LSTM/OEM) è robusto e veloce; per multi-script o prototipi veloci, EasyOCR è produttivo; per la scrittura a mano o i caratteri tipografici storici, considera Kraken o Calamari e pianifica la messa a punto. Se hai bisogno di un accoppiamento stretto con la comprensione dei documenti (estrazione chiave-valore, VQA), valuta TrOCR (OCR) rispetto a Donut (senza OCR) sul tuo schema—Donut potrebbe rimuovere un intero passaggio di integrazione.
  • Misura ciò che conta. Per i sistemi end-to-end, riporta il rilevamento F-score e il riconoscimento CER/WER (entrambi basati sulla distanza di modifica di Levenshtein ; vedi CTC); per compiti pesanti dal punto di vista del layout, traccia IoU/aderenza e la distanza di modifica normalizzata a livello di carattere come nei kit di valutazione ICDAR RRC .
  • Esporta output ricchi. Preferisci hOCR /ALTO (o entrambi) in modo da conservare le coordinate e l'ordine di lettura—fondamentale per l'evidenziazione dei risultati di ricerca, l'estrazione di tabelle/campi e la provenienza. La CLI di Tesseract e pytesseract lo rendono un gioco da ragazzi.

Guardando al futuro

La tendenza più forte è la convergenza: rilevamento, riconoscimento, modellazione del linguaggio e persino la decodifica specifica del compito si stanno fondendo in stack Transformer unificati. Il pre-addestramento su grandi corpora sintetici rimane un moltiplicatore di forza. I modelli senza OCR competeranno aggressivamente ovunque l'obiettivo siano output strutturati piuttosto che trascrizioni letterali. Aspettatevi anche implementazioni ibride: un rilevatore leggero più un riconoscitore in stile TrOCR per testo lungo, e un modello in stile Donut per moduli e ricevute.

Ulteriori letture e strumenti

Tesseract (GitHub) · Documentazione di Tesseract · Specifiche hOCR · Sfondo ALTO · Rilevatore EAST · Rilevamento del testo OpenCV · TrOCR · Donut · COCO-Text · SynthText · Kraken · Calamari OCR · ICDAR RRC · pytesseract · Scrittura a mano IAM · Strumenti per formati di file OCR · EasyOCR

Domande frequenti

Cos'è l'OCR?

L'Optical Character Recognition (OCR) è una tecnologia utilizzata per convertire vari tipi di documenti, come documenti cartacei scansionati, file PDF o immagini catturate da una fotocamera digitale, in dati modificabili e ricercabili.

Come funziona l'OCR?

L'OCR funziona analizzando l'immagine o il documento in ingresso, segmentando l'immagine in singoli caratteri, e confrontando ciascun carattere con un database di forme carattere utilizzando il riconoscimento di pattern o il riconoscimento delle caratteristiche.

Quali sono le applicazioni pratiche dell'OCR?

L'OCR viene utilizzato in vari settori e applicazioni, tra cui la digitalizzazione di documenti stampati, l'attivazione di servizi di testo in voce, l'automazione dei processi di inserimento dati, e l'aiuto agli utenti con problemi di vista a interagire in modo più efficace con il testo.

L'OCR è sempre preciso al 100%?

Nonostante ci siano stati notevoli progressi nella tecnologia OCR, non è infallibile. L'accuratezza può variare a seconda della qualità del documento originale e delle specifiche del software OCR utilizzato.

L'OCR può riconoscere la scrittura a mano?

Sebbene l'OCR sia principalmente progettato per il testo stampato, alcuni sistemi OCR avanzati sono anche in grado di riconoscere la scrittura a mano chiara e coerente. Tuttavia, il riconoscimento della scrittura a mano è generalmente meno preciso a causa della grande varietà di stili di scrittura individuali.

L'OCR può gestire più lingue?

Sì, molti sistemi software OCR possono riconoscere più lingue. Tuttavia, è importante assicurarsi che la lingua specifica sia supportata dal software che si utilizza.

Qual è la differenza tra OCR e ICR?

L'OCR sta per Optical Character Recognition ed è usato per riconoscere il testo stampato, mentre l'ICR, o Intelligent Character Recognition, è più avanzato ed è usato per riconoscere il testo scritto a mano.

L'OCR può lavorare con qualsiasi font e dimensione del testo?

L'OCR funziona meglio con font chiari, facilmente leggibili e dimensioni standard del testo. Anche se può lavorare con vari font e dimensioni, l'accuratezza tende a diminuire quando si tratta di font insoliti o dimensioni del testo molto piccole.

Quali sono le limitazioni della tecnologia OCR?

L'OCR può avere difficoltà con documenti a bassa risoluzione, font complessi, testi stampati male, scrittura a mano, e documenti con sfondi che interferiscono con il testo. Inoltre, anche se può lavorare con molte lingue, potrebbe non coprire ogni lingua perfettamente.

L'OCR può eseguire la scansione di testi colorati o sfondi colorati?

Sì, l'OCR può eseguire la scansione di testi colorati e sfondi colorati, sebbene generalmente sia più efficace con combinazioni di colori ad alto contrasto, come il testo nero su sfondo bianco. L'accuratezza può diminuire quando il colore del testo e dello sfondo non ha un contrasto sufficiente.

Qual è il formato JP2?

Sintassi del Formato File JPEG-2000

JPEG 2000 (JP2) è uno standard di compressione delle immagini e un sistema di codifica creato dal comitato Joint Photographic Experts Group (JPEG) nel 2000 con l'intenzione di sostituire lo standard JPEG originale. JPEG 2000 è noto anche per l'estensione del nome file .jp2. È stato sviluppato da zero per affrontare alcune delle limitazioni del formato JPEG originale, fornendo al contempo una qualità dell'immagine e una flessibilità superiori. È importante notare che JPC viene spesso utilizzato come termine per fare riferimento al flusso di codice JPEG 2000, che è il flusso effettivo di byte che rappresenta i dati dell'immagine compressa, in genere presente nei file JP2 o in altri formati contenitore come MJ2 per sequenze JPEG 2000 in movimento.

JPEG 2000 utilizza la compressione basata su wavelet, al contrario della trasformata discreta del coseno (DCT) utilizzata nel formato JPEG originale. La compressione wavelet offre diversi vantaggi, tra cui una migliore efficienza di compressione, in particolare per immagini ad alta risoluzione, e una migliore qualità dell'immagine a rapporti di compressione più elevati. Ciò è dovuto al fatto che le wavelet non soffrono degli artefatti "a blocchi" che possono essere introdotti dalla DCT quando le immagini sono altamente compresse. Al contrario, la compressione wavelet può comportare un degrado più naturale della qualità dell'immagine, che spesso è meno evidente all'occhio umano.

Una delle caratteristiche principali di JPEG 2000 è il suo supporto sia per la compressione senza perdita di dati che per quella con perdita di dati all'interno dello stesso formato file. Ciò significa che gli utenti possono scegliere di comprimere un'immagine senza alcuna perdita di qualità oppure possono optare per la compressione con perdita di dati per ottenere dimensioni di file più piccole. La modalità senza perdita di dati di JPEG 2000 è particolarmente utile per applicazioni in cui l'integrità dell'immagine è critica, come l'imaging medico, gli archivi digitali e la fotografia professionale.

Un'altra caratteristica significativa di JPEG 2000 è il suo supporto per la decodifica progressiva. Ciò consente di decodificare e visualizzare un'immagine in modo incrementale man mano che i dati vengono ricevuti, il che può essere molto utile per applicazioni Web o situazioni in cui la larghezza di banda è limitata. Con la decodifica progressiva, è possibile visualizzare prima una versione di bassa qualità dell'intera immagine, seguita da raffinamenti successivi che migliorano la qualità dell'immagine man mano che diventano disponibili più dati. Ciò è in contrasto con il formato JPEG originale, che in genere carica un'immagine dall'alto verso il basso.

JPEG 2000 offre anche una ricca serie di funzionalità aggiuntive, tra cui la codifica della regione di interesse (ROI), che consente di comprimere parti diverse di un'immagine a diversi livelli di qualità. Ciò è particolarmente utile quando alcune aree di un'immagine sono più importanti di altre e devono essere preservate con maggiore fedeltà. Ad esempio, in un'immagine satellitare, l'area di interesse potrebbe essere compressa senza perdita di dati, mentre le aree circostanti vengono compresse con perdita di dati per risparmiare spazio.

Lo standard JPEG 2000 supporta anche un'ampia gamma di spazi colore, tra cui scala di grigi, RGB, YCbCr e altri, nonché una profondità del colore che va da 1 bit (binario) fino a 16 bit per componente sia nelle modalità senza perdita di dati che con perdita di dati. Questa flessibilità lo rende adatto a una varietà di applicazioni di imaging, dalla semplice grafica Web all'imaging medico complesso che richiede un'elevata gamma dinamica e una rappresentazione precisa del colore.

In termini di struttura del file, un file JPEG 2000 è composto da una serie di box, che contengono diverse informazioni sul file. Il box principale è il box di intestazione JP2, che include proprietà come il tipo di file, le dimensioni dell'immagine, la profondità di bit e lo spazio colore. Dopo l'intestazione, ci sono box aggiuntivi che possono contenere metadati, informazioni sul profilo colore e i dati effettivi dell'immagine compressa (il flusso di codice).

Il flusso di codice stesso è costituito da una serie di marcatori e segmenti che definiscono come vengono compressi i dati dell'immagine e come dovrebbero essere decodificati. Il flusso di codice inizia con il marcatore SOC (Start of Codestream) e termina con il marcatore EOC (End of Codestream). Tra questi marcatori, ci sono diversi segmenti importanti, tra cui il segmento SIZ (Image and tile size), che definisce le dimensioni dell'immagine e delle tessere, e il segmento COD (Coding style default), che specifica la trasformazione wavelet e i parametri di quantizzazione utilizzati per la compressione.

La resilienza agli errori di JPEG 2000 è un'altra caratteristica che lo distingue dal suo predecessore. Il flusso di codice può includere informazioni di correzione degli errori che consentono ai decodificatori di rilevare e correggere gli errori che potrebbero essersi verificati durante la trasmissione. Ciò rende JPEG 2000 una buona scelta per la trasmissione di immagini su canali rumorosi o per l'archiviazione di immagini in modo da ridurre al minimo il rischio di danneggiamento dei dati.

Nonostante i suoi numerosi vantaggi, JPEG 2000 non ha visto un'adozione diffusa rispetto al formato JPEG originale. Ciò è dovuto in parte alla maggiore complessità computazionale della compressione e decompressione basata su wavelet, che può richiedere maggiore potenza di elaborazione e può essere più lenta dei metodi basati su DCT. Inoltre, il formato JPEG originale è profondamente radicato nell'industria dell'imaging e ha un ampio supporto su software e hardware, rendendolo una scelta predefinita per molte applicazioni.

Tuttavia, JPEG 2000 ha trovato una nicchia in alcuni campi in cui le sue funzionalità avanzate sono particolarmente vantaggiose. Ad esempio, viene utilizzato nel cinema digitale per la distribuzione di film, dove sono importanti la sua rappresentazione di immagini di alta qualità e il supporto per diversi rapporti di aspetto e frame rate. Viene utilizzato anche nei sistemi di informazione geografica (GIS) e nel telerilevamento, dove la sua capacità di gestire immagini molto grandi e il supporto per la codifica ROI sono preziosi.

Per gli sviluppatori software e gli ingegneri che lavorano con JPEG 2000, sono disponibili diverse librerie e strumenti che forniscono supporto per la codifica e la decodifica di file JP2. Una delle più note è la libreria OpenJPEG, che è un codec JPEG 2000 open source scritto in C. Anche altri pacchetti software commerciali offrono supporto JPEG 2000, spesso con prestazioni ottimizzate e funzionalità aggiuntive.

In conclusione, il formato immagine JPEG 2000 offre una gamma di funzionalità e miglioramenti rispetto allo standard JPEG originale, tra cui una maggiore efficienza di compressione, supporto sia per la compressione senza perdita di dati che con perdita di dati, decodifica progressiva e avanzata resilienza agli errori. Sebbene non abbia sostituito JPEG nella maggior parte delle applicazioni tradizionali, funge da strumento prezioso nei settori che richiedono archiviazione e trasmissione di immagini di alta qualità. Man mano che la tecnologia continua ad avanzare e cresce la necessità di soluzioni di imaging più sofisticate, JPEG 2000 potrebbe vedere una maggiore adozione in mercati nuovi ed esistenti.

Formati supportati

AAI.aai

Immagine AAI Dune

AI.ai

Adobe Illustrator CS2

AVIF.avif

Formato di file immagine AV1

BAYER.bayer

Immagine Bayer grezza

BMP.bmp

Immagine bitmap di Microsoft Windows

CIN.cin

File immagine Cineon

CLIP.clip

Maschera di ritaglio immagine

CMYK.cmyk

Campioni grezzi ciano, magenta, giallo e nero

CUR.cur

Icona Microsoft

DCX.dcx

ZSoft IBM PC multi-pagina Paintbrush

DDS.dds

Superficie DirectDraw Microsoft

DPX.dpx

Immagine SMTPE 268M-2003 (DPX 2.0)

DXT1.dxt1

Superficie DirectDraw Microsoft

EPDF.epdf

Formato Documento Portatile Incapsulato

EPI.epi

Formato di interscambio PostScript incapsulato Adobe

EPS.eps

PostScript incapsulato Adobe

EPSF.epsf

PostScript incapsulato Adobe

EPSI.epsi

Formato di interscambio PostScript incapsulato Adobe

EPT.ept

PostScript incapsulato con anteprima TIFF

EPT2.ept2

PostScript incapsulato Livello II con anteprima TIFF

EXR.exr

Immagine ad alto range dinamico (HDR)

FF.ff

Farbfeld

FITS.fits

Sistema di Trasporto Immagini Flessibile

GIF.gif

Formato di interscambio grafico CompuServe

HDR.hdr

Immagine ad Alto Range Dinamico

HEIC.heic

Contenitore immagini ad alta efficienza

HRZ.hrz

Slow Scan TeleVision

ICO.ico

Icona Microsoft

ICON.icon

Icona Microsoft

J2C.j2c

Flusso di codici JPEG-2000

J2K.j2k

Flusso di codici JPEG-2000

JNG.jng

Grafica di Rete JPEG

JP2.jp2

Sintassi del Formato File JPEG-2000

JPE.jpe

Formato JFIF del Gruppo di Esperti Fotografici Coniugati

JPEG.jpeg

Formato JFIF del Gruppo di Esperti Fotografici Coniugati

JPG.jpg

Formato JFIF del Gruppo di Esperti Fotografici Coniugati

JPM.jpm

Sintassi del Formato File JPEG-2000

JPS.jps

Formato JPS del Gruppo di Esperti Fotografici Coniugati

JPT.jpt

Sintassi del Formato File JPEG-2000

JXL.jxl

Immagine JPEG XL

MAP.map

Database di Immagini Senza Soluzione di Continuità a Multi-risoluzione (MrSID)

MAT.mat

Formato immagine MATLAB livello 5

PAL.pal

Pixmap Palm

PALM.palm

Pixmap Palm

PAM.pam

Formato bitmap bidimensionale comune

PBM.pbm

Formato bitmap portatile (bianco e nero)

PCD.pcd

Foto CD

PCT.pct

Apple Macintosh QuickDraw/PICT

PCX.pcx

ZSoft IBM PC Paintbrush

PDB.pdb

Formato ImageViewer del database Palm

PDF.pdf

Formato Documento Portatile

PDFA.pdfa

Formato di Archivio Documento Portatile

PFM.pfm

Formato float portatile

PGM.pgm

Formato graymap portatile (scala di grigi)

PGX.pgx

Formato non compresso JPEG 2000

PICT.pict

Apple Macintosh QuickDraw/PICT

PJPEG.pjpeg

Formato JFIF del Gruppo di Esperti Fotografici Condivisi

PNG.png

Grafica Rete Portatile

PNG00.png00

PNG eredita la profondità di bit, il tipo di colore dall'immagine originale

PNG24.png24

RGB a 24 bit opaco o trasparente binario (zlib 1.2.11)

PNG32.png32

RGBA a 32 bit opaco o trasparente binario

PNG48.png48

RGB a 48 bit opaco o trasparente binario

PNG64.png64

RGBA a 64 bit opaco o trasparente binario

PNG8.png8

Indicizzato a 8 bit opaco o trasparente binario

PNM.pnm

Anymap portatile

PPM.ppm

Formato pixmap portatile (colore)

PS.ps

File Adobe PostScript

PSB.psb

Formato Grande Documento Adobe

PSD.psd

Bitmap Adobe Photoshop

RGB.rgb

Campioni grezzi di rosso, verde e blu

RGBA.rgba

Campioni grezzi di rosso, verde, blu e alfa

RGBO.rgbo

Campioni grezzi di rosso, verde, blu e opacità

SIX.six

Formato grafico DEC SIXEL

SUN.sun

Rasterfile Sun

SVG.svg

Grafica Vettoriale Scalabile

TIFF.tiff

Formato File Immagine Etichettato

VDA.vda

Immagine Truevision Targa

VIPS.vips

Immagine VIPS

WBMP.wbmp

Immagine Bitmap Wireless (livello 0)

WEBP.webp

Formato Immagine WebP

YUV.yuv

CCIR 601 4:1:1 o 4:2:2

Domande frequenti

Come funziona?

Questo convertitore funziona interamente nel tuo browser. Quando selezioni un file, viene letto in memoria e convertito nel formato selezionato. Puoi quindi scaricare il file convertito.

Quanto tempo ci vuole per convertire un file?

Le conversioni iniziano istantaneamente e la maggior parte dei file viene convertita in meno di un secondo. I file più grandi potrebbero richiedere più tempo.

Cosa succede ai miei file?

I tuoi file non vengono mai caricati sui nostri server. Vengono convertiti nel tuo browser e il file convertito viene quindi scaricato. Non vediamo mai i tuoi file.

Quali tipi di file posso convertire?

Supportiamo la conversione tra tutti i formati di immagine, inclusi JPEG, PNG, GIF, WebP, SVG, BMP, TIFF e altro ancora.

Quanto costa?

Questo convertitore è completamente gratuito e lo sarà sempre. Poiché funziona nel tuo browser, non dobbiamo pagare per i server, quindi non dobbiamo addebitarti alcun costo.

Posso convertire più file contemporaneamente?

Sì! Puoi convertire tutti i file che vuoi in una volta. Basta selezionare più file quando li aggiungi.