EXIF(교환 이미지 파일 형식)는 카메라와 휴대폰이 이미지 파일(노출, 렌즈, 타임스탬프, GPS까지)에 내장하는 캡처 메타데이터 블록으로, JPEG 및 TIFF와 같은 형식 내에 패키지된 TIFF 스타일 태그 시스템을 사용합니다. 사진 라이브러리 및 워크플로 전반에 걸쳐 검색 기능, 정렬 및 자동화에 필수적이지만 부주의하게 공유될 경우 의도하지 않은 유출 경로가 될 수도 있습니다(ExifTool 및 Exiv2를 사용하면 쉽게 검사할 수 있음).
낮은 수준에서 EXIF는 TIFF의 이미지 파일 디렉토리(IFD) 구조를 재사용하고 JPEG에서는 APP1 마커(0xFFE1) 내에 존재하여 작은 TIFF를 JPEG 컨테이너 내에 효과적으로 중첩시킵니다(JFIF 개요, CIPA 사양 포털). 공식 사양인 CIPA DC-008(EXIF)(현재 3.x)은 IFD 레이아웃, 태그 유형 및 제약 조건을 문서화합니다(CIPA DC-008, 사양 요약). EXIF는 전용 GPS 하위 IFD(태그 0x8825)와 상호 운용성 IFD(0xA005)를 정의합니다(Exif 태그 테이블).
패키징 세부 정보가 중요합니다. 일반적인 JPEG는 JFIF APP0 세그먼트로 시작하고 그 뒤에 APP1의 EXIF가 옵니다. 이전 리더는 JFIF를 먼저 예상하는 반면 최신 라이브러리는 둘 다를 즐겁게 구문 분석합니다(APP 세그먼트 참고). 실제 파서는 사양이 요구하지 않는 APP 순서나 크기 제한을 가정하는 경우가 있으며, 이것이 도구 작성자가 기이함과 특이 사례를 문서화하는 이유입니다(Exiv2 메타데이터 가이드, ExifTool 문서).
EXIF는 JPEG/TIFF에만 국한되지 않습니다. PNG 생태계는 PNG에서 EXIF를 전달하기 위해 eXIf 청크를 표준화했습니다(지원이 증가하고 있으며 IDAT에 대한 청크 순서는 일부 구현에서 중요할 수 있음). RIFF 기반 형식인 WebP는 전용 청크에 EXIF, XMP 및 ICC를 수용합니다(WebP RIFF 컨테이너, libwebp). Apple 플랫폼에서 Image I/O는 XMP 및 제조업체 데이터와 함께 HEIC/HEIF로 변환할 때 EXIF를 보존합니다(kCGImagePropertyExifDictionary).
앱이 카메라 설정을 어떻게 유추하는지 궁금한 적이 있다면 EXIF의 태그 맵이 답입니다. Make, Model,FNumber, ExposureTime, ISOSpeedRatings, FocalLength, MeteringMode, 등은 기본 및 EXIF 하위 IFD에 있습니다(Exif 태그, Exiv2 태그). Apple은 ExifFNumber 및 GPSDictionary와 같은 Image I/O 상수를 통해 이를 노출합니다. Android에서는 AndroidX ExifInterface 가 JPEG, PNG, WebP 및 HEIF에서 EXIF를 읽고 씁니다.
방향은 특별히 언급할 가치가 있습니다. 대부분의 장치는 픽셀을 "촬영된 대로" 저장하고 뷰어에게 디스플레이에서 회전하는 방법을 알려주는 태그를 기록합니다. 이것이 1(보통), 6(시계 방향 90°), 3(180°), 8(시계 방향 270°)과 같은 값을 가진 태그 274(Orientation)입니다. 이 태그를 존중하거나 업데이트하지 않으면 사진이 옆으로 눕고 축소판이 일치하지 않으며 다운스트림 ML 오류가 발생합니다 (방향 태그;실용 가이드). 파이프라인은 종종 픽셀을 물리적으로 회전하고 Orientation=1로 설정하여 정규화합니다 (ExifTool).
시간 기록은 보기보다 까다롭습니다. DateTimeOriginal과 같은 과거 태그에는 시간대가 없어 국경을 넘는 촬영이 모호해집니다. 최신 태그는 시간대 동반자를 추가합니다(예: OffsetTimeOriginal). 따라서 소프트웨어는 건전한 순서 지정 및 지리 상관 관계를 위해 DateTimeOriginal에 UTC 오프셋(예: -07:00)을 더하여 기록할 수 있습니다 (OffsetTime* 태그;태그 개요).
EXIF는 IPTC 사진 메타데이터(제목, 제작자, 권리, 주제) 및 Adobe의 RDF 기반 프레임워크인 XMP(ISO 16684-1로 표준화됨)와 공존하며 때로는 겹칩니다. 실제로 잘 작동하는 소프트웨어는 카메라에서 작성한 EXIF와 사용자가 작성한 IPTC/XMP를 둘 다 버리지 않고 조정합니다 (IPTC 지침;XMP에 대한 LoC;EXIF에 대한 LoC).
개인 정보는 EXIF가 논란이 되는 부분입니다. 지오태그와 장치 일련 번호는 민감한 위치를 한 번 이상 노출했습니다. 대표적인 예는 2012년 Vice의 John McAfee 사진으로, EXIF GPS 좌표가 그의 행방을 드러냈다고 합니다 (Wired;The Guardian). 많은 소셜 플랫폼은 업로드 시 대부분의 EXIF를 제거하지만 동작은 다양하며 시간이 지남에 따라 변경됩니다. 자신의 게시물을 다운로드하고 도구로 검사하여 확인하십시 오 (Twitter 미디어 도움말;Facebook 도움말;Instagram 도움말).
보안 연구원들도 EXIF 파서를 면밀히 주시합니다. 널리 사용되는 라이브러리(예: libexif)의 취약점에는 잘못된 형식의 태그로 인해 트리거되는 버퍼 오버플로 및 OOB 읽기가 포함되었습니다. EXIF는 예측 가능한 위치에 구조화된 이진 파일이므로 쉽게 만들 수 있습니다 (권고;NVD 검색). 신뢰할 수 없는 파일을 수집하는 경우 메타데이터 라이브러리를 패치하고 이미지 처리를 샌드박스 처리하십시오.
신중하게 사용하면 EXIF는 사진 카탈로그, 권리 워크플로 및 컴퓨터 비전 파이프라인을 구동하는 결합 조직입니다. 순진하게 사용하면 공유하고 싶지 않은 빵 부스러기 흔적입니다. 좋은 소식은 생태계(사양, OS API 및 도구)가 필요한 제어 기능을 제공한다는 것입니다 (CIPA EXIF;ExifTool;Exiv2;IPTC;XMP).
EXIF, 또는 교환 가능한 이미지 파일 포맷, 데이터는 카메라 설정, 사진이 찍힌 날짜와 시간, 그리고 GPS가 활성화된 경우 위치 정보 등 사진에 대한 다양한 메타데이터를 포함합니다.
대부분의 이미지 뷰어 및 편집기(예: Adobe Photoshop, Windows 사진 뷰어 등)에서 EXIF 데이터를 볼 수 있습니다. 당신은 단지 속성이나 정보 패널을 열면 됩니다.
네, Adobe Photoshop, Lightroom 등의 특정 소프트웨어 프로그램이나 손쉽게 사용할 수 있는 온라인 리소스를 통해 EXIF 데이터를 편집할 수 있습니다. 이러한 도구들을 이용하여 특정 EXIF 메타데이터 필드를 조정하거나 삭제할 수 있습니다.
네. GPS가 활성화된 상태라면, EXIF 메타데이터에 포함된 위치 데이터는 사진이 찍힌 곳에 대한 민감한 지리적 정보를 공개할 수 있습니다. 따라서 사진을 공유할 때 이 데이터를 제거하거나 난독화하는 것이 좋습니다.
여러 소프트웨어 프로그램들은 EXIF 데이터를 제거할 수 있는 기능을 제공합니다. 이 과정은 EXIF 데이터 '제거'라고도 알려져 있습니다. 이러한 기능을 제공하는 여러 온라인 도구들도 있습니다.
Facebook, Instagram, Twitter 등 대부분의 소셜 미디어 플랫폼은 사용자의 프라이버시를 유지하기 위해 이미지에서 EXIF 데이터를 자동으로 제거합니다.
EXIF 데이터는 카메라 모델, 촬영 날짜 및 시간, 초점 거리, 노출 시간, 조리개, ISO 설정, 화이트 밸런스 설정, GPS 위치 등 다양한 정보를 포함할 수 있습니다.
사진작가들에게 EXIF 데이터는 특정 사진에 사용된 정확한 설정을 이해하는데 도움이 될 수 있습니다. 이 정보는 기법을 향상시키거나, 향후 사진 촬영에서 비슷한 조건을 복제하는데 도움이 될 수 있습니다.
아니요, 디지털 카메라와 스마트폰과 같이 EXIF 메타데이터를 지원하는 장치에서 찍힌 이미지만 EXIF 데이터를 포함할 수 있습니다.
네, EXIF 데이터는 일본 전자 산업 개발 협회(JEIDA)가 설정한 표준을 따릅니다. 그러나 특정 제조업체는 추가적인 독점 정보를 포함할 수 있습니다.
포터블 플로트맵(PFM) 파일 형식은 덜 알려졌지만 이미지 데이터에 높은 충실도와 정밀도가 필요한 분야에서 특히 중요한 이미지 형식입니다. 일반적인 용도와 웹 그래픽을 위해 설계된 JPEG나 PNG와 달리 PFM 형식은 특히 고동적 범위(HDR) 이미지 데이터를 저장하고 처리하도록 설계되었습니다. 즉, 기존 8비트 또는 16비트 이미지 형식보다 훨씬 더 넓은 휘도 수준을 표현할 수 있습니다. PFM 형식은 각 픽셀의 강도를 표현하기 위해 부동 소수점 숫자를 사용하여 가장 어두운 그림자에서 가장 밝은 하이라이트까지 거의 무제한의 밝기 값을 허용함으로써 이를 달성합니다.
PFM 파일은 HDR 데이터를 저장하는 데 있어 간결하고 효율적이라는 특징이 있습니다. PFM 파일은 본질적으로 헤더 섹션과 픽셀 데이터로 구성된 바이너리 파일입니다. 헤더는 사람이 읽을 수 있는 ASCII 텍스트이며 이미지에 대한 중요한 정보(예: 너비와 높이와 같은 차원)와 픽셀 데이터가 그레이스케일 또는 RGB 형식으로 저장되는지 여부를 지정합니다. 헤더에 이어 픽셀 데이터는 바이너리 형식으로 저장되며 각 픽셀의 값은 32비트(그레이스케일 이미지의 경우) 또는 96비트(RGB 이미지의 경우) IEEE 부동 소수점 숫자로 표현됩니다. 이 구조는 HDR 이미징에 필요한 정밀도를 제공하면서도 소프트웨어에서 형식을 간단하게 구현할 수 있도록 합니다.
PFM 형식 의 고유한 측면 중 하나는 리틀 엔디안과 빅 엔디안 바이트 순서를 모두 지원한다는 것입니다. 이러한 유연성은 호환성 문제 없이 서로 다른 컴퓨팅 플랫폼에서 형식을 사용할 수 있도록 합니다. 바이트 순서는 형식 식별자에 의해 헤더에 표시됩니다. RGB 이미지의 경우 'PF', 그레이스케일 이미지의 경우 'Pf'입니다. 식별자가 대문자이면 파일이 빅 엔디안 바이트 순서를 사용한다는 의미이고 소문자이면 파일이 리틀 엔디안을 사용한다는 의미입니다. 이 메커니즘은 우아할 뿐만 아니라 서로 다른 바이트 순서를 가진 시스템 간에 파일을 공유할 때 부동 소수점 데이터의 정확성을 유지하는 데 필수적입니다.
HDR 이미지를 표현하는 데 있어 장점이 있음에도 불구하고 PFM 형식은 각 픽셀에 부동 소수점 표현을 사용하여 발생하는 큰 파일 크기 때문에 소비자 애플리케이션이나 웹 그래픽에서는 널리 사용되지 않습니다. 게다가 대부분의 디스플레이 장치와 소프트웨어는 PFM 파일이 제공하는 높은 동적 범위와 정밀도를 처리하도록 설계되지 않았습니다. 결과적으로 PFM 파일은 주로 컴퓨터 그래픽 연구, 시각 효과 제작, 과학적 시각화와 같이 최고의 이미지 품질과 충실도가 요구되는 전문 분야에서 사용됩니다.
PFM 파일을 처리하려면 부동 소수점 데이터를 정확하게 읽고 쓸 수 있는 특수 소프트웨어가 필요합니다. 형식의 채택이 제한되어 있기 때문에 이러한 소프트웨어는 보다 일반적인 이미지 형식을 위한 도구보다 덜 일반적입니다. 그럼에도 불구하고 몇몇 전문가급 이미지 편집 및 처리 애플리케이션은 PFM 파일을 지원하여 사용자가 HDR 콘텐츠로 작업할 수 있도록 합니다. 이러한 도구는 종종 보거나 편집하는 것 뿐만 아니라 톤 매핑 및 기타 기술을 통해 가능한 한 많은 동적 범위를 보존하면서 PFM 파일을 보다 기존의 형식으로 변환하는 기능을 제공합니다.
PFM 파일로 작업할 때 가장 중요한 과제 중 하나는 소비자 하드웨어와 소프트웨어에서 HDR 콘텐츠에 대한 광범위한 지원이 부족하다는 것입니다. 최근 몇 년간 HDR 지원이 점진적으로 증가하고 일부 최신 디스플레이와 TV가 더 넓은 휘도 수준을 표시할 수 있게 되었지만 생태계는 아직 따라잡지 못하고 있습니다. 이러한 상황은 종종 PFM 파일을 더 광범위하게 호환되는 형식으로 변환해야 하지만 전문적인 용도로 PFM 형식을 매우 가치 있게 만드는 동적 범위와 정밀도 중 일부를 희생해야 합니다.
HDR 이미지를 저장하는 주요 역할 외에도 PFM 형식은 간결함으로 유명하여 컴퓨터 그래픽 및 이미지 처리의 교육적 목적과 실험적 프로젝트에 탁월한 선택이 됩니다. 간단한 구조를 통해 학생과 연구자는 복잡한 파일 형식 사양에 얽매이지 않고도 HDR 데이터를 쉽게 이해하고 조작할 수 있습니다. 이러한 사용 편의성은 형식의 정밀도와 유연성과 결합되어 PFM을 학술 및 연구 환경에서 귀중한 도구로 만듭니다.
PFM 형식의 또 다른 기술적 특징은 IEEE 부동 소수점 표현을 사용하여 무한수와 비정규수를 지원한다는 것입니다. 이 기능은 과학적 시각화와 특정 유형의 컴퓨터 그래픽 작업에서 특히 유용하며, 여기에서는 극단적인 값이나 데이터의 매우 미세한 그라데이션을 표현해야 합니다. 예를 들어, 물리적 현상을 시뮬레이션하거나 매우 밝은 광원이 있는 장면을 렌더링할 때 매우 높거나 매우 낮은 강도 값을 정확하게 표현하는 기능이 중요할 수 있습니다.
그러나 PFM 형식의 부동 소수점 정밀도의 이점은 특히 대규모 이미지의 경우 이러한 파일을 처리할 때 계산 요구 사항이 증가한다는 것입니다. 각 픽셀의 값이 부동 소수점 숫자이므로 이미지 크기 조정, 필터링 또는 톤 매핑과 같은 작업은 기존 정수 기반 이미지 형식보다 계산적으로 더 집약적일 수 있습니다. 더 많은 처리 능력에 대한 이러한 요구 사항은 실시간 애플리케이션이나 기능이 제한된 하드웨어에서 제한이 될 수 있습니다. 그럼에도 불구하고 최고의 이미지 품질이 가장 중요한 애플리케이션의 경우 이러한 계산적 과제보다 이점이 훨씬 더 큽니다.
PFM 형식에는 또한 헤더에 스케일 팩터와 엔디안을 지정하는 조항이 포함되어 다목성을 더욱 높입니다. 스케일 팩터는 파일이 파일의 픽셀 값의 숫자 범위로 표현된 물리적 밝기 범위를 나타낼 수 있도록 하는 부동 소수점 숫자입니다. 이 기능은 PFM 파일이 서로 다른 프로젝트에서 사용되거나 협업자 간에 공유될 때 픽셀 값이 실제 휘도 값과 어떻게 상관관계가 있는지 명확하게 이해하는 데 필수적입니다.
PFM 형식의 기술적 이점에도 불구하고 틈새 전문 및 학술 환경을 넘어 더 널리 채택하는 데 상당한 과제가 있습니다. PFM 파일을 처리하는 데 필요한 특수 소프트웨어와 대규모 파일 크기 및 계산 요구 사항이 결합되어 더 유비쿼터스한 형식에 비해 사용이 제한됩니다. PFM 형식이 더 널리 받아들여지려면 HDR 콘텐츠를 표시할 수 있는 사용 가능한 하드웨어와 고충실도, 고동적 범위 이미지에 대한 소프트웨어 생태계 지원에 상당한 변화가 필요합니다.
앞으로 PFM 형식과 HDR 이미징의 미래는 전반적으로 디스플레이 기술과 이미지 처리 알고리즘의 발전과 관련이 있습니다. 더 넓은 휘도 수준을 표현할 수 있는 디스플레이가 보편화되고 계산 리소스가 더 쉽게 접근할 수 있게 되면 PFM과 같은 HDR 형식을 사용하는 데 따른 장애물이 줄어들 수 있습니다. 게다가 부동 소수점 이미지 데이터를 처리하는 데 더 효율적인 알
이 변환기는 전적으로 브라우저에서 실행됩니다. 파일을 선택하면 메모리로 읽어와 선택한 형식으로 변환됩니다. 그런 다음 변환된 파일을 다운로드할 수 있습니다.
변환은 즉시 시작되며 대부분의 파일은 1초 이내에 변환됩니다. 파일이 크면 더 오래 걸릴 수 있습니다.
파일은 서버에 업로드되지 않습니다. 브라우저에서 변환된 다음 변환된 파일이 다운로드됩니다. 우리는 귀하의 파일을 절대 보지 않습니다.
JPEG, PNG, GIF, WebP, SVG, BMP, TIFF 등을 포함한 모든 이미지 형식 간의 변환을 지원합니다.
이 변환기는 완전히 무료이며 항상 무료입니다. 브라우저에서 실행되기 때문에 서버 비용을 지불할 필요가 없으므로 비용을 청구할 필요가 없습니다.
예! 한 번에 원하는 만큼 많은 파일을 변환할 수 있습니다. 추가할 때 여러 파일을 선택하기만 하면 됩니다.