EXIF(교환 이미지 파일 형식)는 카메라와 휴대폰이 이미지 파일(노출, 렌즈, 타임스탬프, GPS까지)에 내장하는 캡처 메타데이터 블록으로, JPEG 및 TIFF와 같은 형식 내에 패키지된 TIFF 스타일 태그 시스템을 사용합니다. 사진 라이브러리 및 워크플로 전반에 걸쳐 검색 기능, 정렬 및 자동화에 필수적이지만 부주의하게 공유될 경우 의도하지 않은 유출 경로가 될 수도 있습니다(ExifTool 및 Exiv2를 사용하면 쉽게 검사할 수 있음).
낮은 수준에서 EXIF는 TIFF의 이미지 파일 디렉토리(IFD) 구조를 재사용하고 JPEG에서는 APP1 마커(0xFFE1) 내에 존재하여 작은 TIFF를 JPEG 컨테이너 내에 효과적으로 중첩시킵니다(JFIF 개요, CIPA 사양 포털). 공식 사양인 CIPA DC-008(EXIF)(현재 3.x)은 IFD 레이아웃, 태그 유형 및 제약 조건을 문서화합니다(CIPA DC-008, 사양 요약). EXIF는 전용 GPS 하위 IFD(태그 0x8825)와 상호 운용성 IFD(0xA005)를 정의합니다(Exif 태그 테이블).
패키징 세부 정보가 중요합니다. 일반적인 JPEG는 JFIF APP0 세그먼트로 시작하고 그 뒤에 APP1의 EXIF가 옵니다. 이전 리더는 JFIF를 먼저 예상하는 반면 최신 라이브러리는 둘 다를 즐겁게 구문 분석합니다(APP 세그먼트 참고). 실제 파서는 사양이 요구하지 않는 APP 순서나 크기 제한을 가정하는 경우가 있으며, 이것이 도구 작성자가 기이함과 특이 사례를 문서화하는 이유입니다(Exiv2 메타데이터 가이드, ExifTool 문서).
EXIF는 JPEG/TIFF에만 국한되지 않습니다. PNG 생태계는 PNG에서 EXIF를 전달하기 위해 eXIf 청크를 표준화했습니다(지원이 증가하고 있으며 IDAT에 대한 청크 순서는 일부 구현에서 중요할 수 있음). RIFF 기반 형식인 WebP는 전용 청크에 EXIF, XMP 및 ICC를 수용합니다(WebP RIFF 컨테이너, libwebp). Apple 플랫폼에서 Image I/O는 XMP 및 제조업체 데이터와 함께 HEIC/HEIF로 변환할 때 EXIF를 보존합니다(kCGImagePropertyExifDictionary).
앱이 카메라 설정을 어떻게 유추하는지 궁금한 적이 있다면 EXIF의 태그 맵이 답입니다. Make, Model,FNumber, ExposureTime, ISOSpeedRatings, FocalLength, MeteringMode, 등은 기본 및 EXIF 하위 IFD에 있습니다(Exif 태그, Exiv2 태그). Apple은 ExifFNumber 및 GPSDictionary와 같은 Image I/O 상수를 통해 이를 노출합니다. Android에서는 AndroidX ExifInterface 가 JPEG, PNG, WebP 및 HEIF에서 EXIF를 읽고 씁니다.
방향은 특별히 언급할 가치가 있습니다. 대부분의 장치는 픽셀을 "촬영된 대로" 저장하고 뷰어에게 디스플레이에서 회전하는 방법을 알려주는 태그를 기록합니다. 이것이 1(보통), 6(시계 방향 90°), 3(180°), 8(시계 방향 270°)과 같은 값을 가진 태그 274(Orientation)입니다. 이 태그를 존중하거나 업데이트하지 않으면 사진이 옆으로 눕고 축소판이 일치하지 않으며 다운스트림 ML 오류가 발생합니다 (방향 태그;실용 가이드). 파이프라인은 종종 픽셀을 물리적으로 회전하고 Orientation=1로 설정하여 정규화합니다 (ExifTool).
시간 기록은 보기보다 까다롭습니다. DateTimeOriginal과 같은 과거 태그에는 시간대가 없어 국경을 넘는 촬영이 모호해집니다. 최신 태그는 시간대 동반자를 추가합니다(예: OffsetTimeOriginal). 따라서 소프트웨어는 건전한 순서 지정 및 지리 상관 관계를 위해 DateTimeOriginal에 UTC 오프셋(예: -07:00)을 더하여 기록할 수 있습니다 (OffsetTime* 태그;태그 개요).
EXIF는 IPTC 사진 메타데이터(제목, 제작자, 권리, 주제) 및 Adobe의 RDF 기반 프레임워크인 XMP(ISO 16684-1로 표준화됨)와 공존하며 때로는 겹칩니다. 실제로 잘 작동하는 소프트웨어는 카메라에서 작성한 EXIF와 사용자가 작성한 IPTC/XMP를 둘 다 버리지 않고 조정합니다 (IPTC 지침;XMP에 대한 LoC;EXIF에 대한 LoC).
개인 정보는 EXIF가 논란이 되는 부분입니다. 지오태그와 장치 일련 번호는 민감한 위치를 한 번 이상 노출했습니다. 대표적인 예는 2012년 Vice의 John McAfee 사진으로, EXIF GPS 좌표가 그의 행방을 드러냈다고 합니다 (Wired;The Guardian). 많은 소셜 플랫폼은 업로드 시 대부분의 EXIF를 제거하지만 동작은 다양하며 시간이 지남에 따라 변경됩니다. 자신의 게시물을 다운로드하고 도구로 검사하여 확인하십시 오 (Twitter 미디어 도움말;Facebook 도움말;Instagram 도움말).
보안 연구원들도 EXIF 파서를 면밀히 주시합니다. 널리 사용되는 라이브러리(예: libexif)의 취약점에는 잘못된 형식의 태그로 인해 트리거되는 버퍼 오버플로 및 OOB 읽기가 포함되었습니다. EXIF는 예측 가능한 위치에 구조화된 이진 파일이므로 쉽게 만들 수 있습니다 (권고;NVD 검색). 신뢰할 수 없는 파일을 수집하는 경우 메타데이터 라이브러리를 패치하고 이미지 처리를 샌드박스 처리하십시오.
신중하게 사용하면 EXIF는 사진 카탈로그, 권리 워크플로 및 컴퓨터 비전 파이프라인을 구동하는 결합 조직입니다. 순진하게 사용하면 공유하고 싶지 않은 빵 부스러기 흔적입니다. 좋은 소식은 생태계(사양, OS API 및 도구)가 필요한 제어 기능을 제공한다는 것입니다 (CIPA EXIF;ExifTool;Exiv2;IPTC;XMP).
EXIF, 또는 교환 가능한 이미지 파일 포맷, 데이터는 카메라 설정, 사진이 찍힌 날짜와 시간, 그리고 GPS가 활성화된 경우 위치 정보 등 사진에 대한 다양한 메타데이터를 포함합니다.
대부분의 이미지 뷰어 및 편집기(예: Adobe Photoshop, Windows 사진 뷰어 등)에서 EXIF 데이터를 볼 수 있습니다. 당신은 단지 속성이나 정보 패널을 열면 됩니다.
네, Adobe Photoshop, Lightroom 등의 특정 소프트웨어 프로그램이나 손쉽게 사용할 수 있는 온라인 리소스를 통해 EXIF 데이터를 편집할 수 있습니다. 이러한 도구들을 이용하여 특정 EXIF 메타데이터 필드를 조정하거나 삭제할 수 있습니다.
네. GPS가 활성화된 상태라면, EXIF 메타데이터에 포함된 위치 데이터는 사진이 찍힌 곳에 대한 민감한 지리적 정보를 공개할 수 있습니다. 따라서 사진을 공유할 때 이 데이터를 제거하거나 난독화하는 것이 좋습니다.
여러 소프트웨어 프로그램들은 EXIF 데이터를 제거할 수 있는 기능을 제공합니다. 이 과정은 EXIF 데이터 '제거'라고도 알려져 있습니다. 이러한 기능을 제공하는 여러 온라인 도구들도 있습니다.
Facebook, Instagram, Twitter 등 대부분의 소셜 미디어 플랫폼은 사용자의 프라이버시를 유지하기 위해 이미지에서 EXIF 데이터를 자동으로 제거합니다.
EXIF 데이터는 카메라 모델, 촬영 날짜 및 시간, 초점 거리, 노출 시간, 조리개, ISO 설정, 화이트 밸런스 설정, GPS 위치 등 다양한 정보를 포함할 수 있습니다.
사진작가들에게 EXIF 데이터는 특정 사진에 사용된 정확한 설정을 이해하는데 도움이 될 수 있습니다. 이 정보는 기법을 향상시키거나, 향후 사진 촬영에서 비슷한 조건을 복제하는데 도움이 될 수 있습니다.
아니요, 디지털 카메라와 스마트폰과 같이 EXIF 메타데이터를 지원하는 장치에서 찍힌 이미지만 EXIF 데이터를 포함할 수 있습니다.
네, EXIF 데이터는 일본 전자 산업 개발 협회(JEIDA)가 설정한 표준을 따릅니다. 그러나 특정 제조업체는 추가적인 독점 정보를 포함할 수 있습니다.
PNG는 Portable Network Graphics의 약자로, 무손실 데이터 압축을 지원하는 래스터 그래픽 파일 형식입니다. Graphics Interchange Format(GIF)를 대체하는 개선되고 특허가 없는 형식으로 개발된 PNG는 전문가 수준의 그래픽뿐만 아니라 사진과 기타 유형의 디지털 이미지를 인터넷으로 전송하도록 설계되었습니다. PNG의 가장 주목할 만한 특징 중 하나는 브라우저 기반 애플리케이션에서 투명도를 지원하는 것으로, 웹 디자인 및 개발에서 중요한 형식이 되었습니다.
PNG의 시작은 GIF 형식에서 사용된 압축 기술을 둘러싼 특허 문제에 따른 1995년으로 거슬러 올라갑니다. 새로운 그래픽 형식을 만들어 달라는 요청이 comp.graphics 뉴스그룹에 올라왔고, 이로 인해 PNG가 개발되었습니다. 이 새로운 형식의 주요 목표는 GIF의 한계를 개선하고 극복하는 것이었습니다. 목표 중에는 256개 이상의 색상을 가진 이미지를 지원하고, 투명도를 위한 알파 채널을 포함하고, 인터레이싱 옵션을 제공하고, 형식이 특허가 없고 오픈 소스 개발에 적합하도록 하는 것이었습니다.
PNG 파일은 1비트 흑백에서 빨간색, 녹색, 파란색(RGB)에 대해 채널당 16비트까지 다양한 색상 깊이를 지원하여 이미지 보존 품질이 뛰어납니다. 이러한 광범위한 색상 지원 덕분에 PNG는 작은 파일 크기로 선 그리기, 텍스트, 아이콘 그래픽을 저장하는 데 적합합니다. 또한 PNG는 알파 채널을 지원하여 다양한 투명도를 허용하여 그림자, 글로우, 반투명 개체와 같은 복잡한 효과를 디지털 이미지에 정밀하게 렌더링할 수 있습니다.
PNG의 두드러진 특징 중 하나는 DEFLATE 방법을 사용하여 정의된 무손실 압축 알고리즘입니다. 이 알고리즘은 이미지 품질을 희생하지 않고 파일 크기를 줄이도록 설계되었습니다. 압축 효율성은 압축되는 데이터 유형에 따라 달라집니다. 특히 균일한 색상이나 반복 패턴이 큰 이미지에 효과적입니다. 무손실 압축이지만 PNG가 JPEG와 같은 형식에 비해 항상 가장 작은 파일 크기를 생성하지는 않을 수 있다는 점에 유의하는 것이 중요합니다. 특히 복잡한 사진의 경우 그렇습니다.
PNG 파일의 구조는 청크를 기반으로 하며, 각 청크는 이미지에 대한 특정 유형의 데이터 또는 메타데이터를 나타냅니다. PNG 파일에 있는 주요 청크 유형은 다음과 같습니다. IHDR(이미지 헤더): 이미지에 대한 기본 정보가 포함되어 있습니다. PLTE(팔레트): 색인 색상 이미지에 사용된 모든 색상을 나열합니다. IDAT(이미지 데이터): DEFLATE 알고리즘으로 압축된 실제 이미지 데이터가 포함되어 있습니다. IEND(이미지 트레일러): PNG 파일의 끝을 표시합니다. 추가 보조 청크는 텍스트 주석 및 감마 값과 같이 이미지에 대한 자세한 정보를 제공할 수 있습니다.
PNG는 또한 인터넷을 통해 이미지를 표시하고 전송하는 것을 개선하기 위한 여러 기능을 통합합니다. 특히 Adam7 알고리즘을 사용하는 인터레이싱을 통해 이미지를 점진적으로 로드할 수 있으며, 이는 느린 인터넷 연결을 통해 이미지를 볼 때 특히 유용할 수 있습니다. 이 기술은 먼저 전체 이미지의 저품질 버전을 표시한 다음 더 많은 데이터를 다운로드하면서 점차 품질이 향상됩니다. 이 기능은 사용자 경험을 향상시킬 뿐만 아니라 웹 사용에 실질적인 이점을 제공합니다.
PNG 파일의 투명도는 GIF에 비해 더 정교한 방식으로 처리됩니다. GIF는 단순한 이진 투명도(픽셀이 완전히 투명하거나 완전히 불투명함)를 지원하는 반면, PNG는 알파 투명도 개념을 도입합니다. 이를 통해 픽셀은 완전히 불투명에서 완전히 투명까지 다양한 투명도를 가질 수 있어 이미지와 배경 간에 더 부드러운 블렌딩과 전환이 가능합니다. 이 기능은 다양한 색상과 패턴의 배경에 이미지를 오버레이해야 하는 웹 디자이너에게 특히 중요합니다.
PNG는 많은 장점이 있지만 몇 가지 한계도 있습니다. 예를 들어, 파일 크기 효율성 측면에서 디지털 사진을 저장하는 데 가장 적합한 선택은 아닙니다. PNG의 무손실 압축은 품질 저하가 없음을 보장하지만, 사진을 압축하도록 특별히 설계된 JPEG와 같은 손실 형식에 비해 파일 크기가 더 커질 수 있습니다. 이로 인해 PNG는 대역폭 또는 저장 용량이 제한된 애플리케이션에 덜 적합해집니다. 또한 PNG는 GIF 및 WebP와 같은 형식이 제공하는 기능인 애니메이션 이미지를 기본적으로 지원하지 않습니다.
PNG 파일에는 이미지 품질을 떨어뜨리지 않고 웹 사용을 위해 파일 크기를 줄이는 최적화 기술을 적용할 수 있습니다. PNGCRUSH 및 OptiPNG와 같은 도구는 가장 효율적인 압축 매개변수를 선택하고 이미지에 가장 적합한 수준으로 색상 깊이를 줄이는 등 다양한 전략을 사용합니다. 이러한 도구는 PNG 파일의 크기를 크게 줄여 로딩 시간과 대역폭 사용이 중요한 우려 사항인 웹 사용에 더 효율적으로 만들 수 있습니다.
또한 PNG 파일에 감마 보정 정보를 포함하면 이미지가 다양한 장치에서 더 일관되게 표시됩니다. 감마 보정은 디스플레이 장치의 특성에 따라 이미지의 밝기 수준을 조정하는 데 도움이 됩니다. 이 기능은 디스플레이 속성이 다른 다양한 장치에서 이미지를 볼 수 있는 웹 그래픽 맥락에서 특히 가치가 있습니다.
PNG의 법적 지위는 널리 받아들여지고 채택되는 데 기여했습니다. 특허가 없기 때문에 PNG는 다른 일부 이미지 형식과 관련된 법적 복잡성과 라이선스 비용을 피할 수 있습니다. 이로 인해 비용과 법적 자유가 중요한 고려 사항인 오픈 소스 프로젝트와 애플리케이션에 특히 매력적으로 작용했습니다. 이 형식은 웹 브라우저, 이미지 편집 프로그램, 운영 체제를 포함한 광범위한 소프트웨어에서 지원되어 다양한 디지털 워크플로에 통합하기 쉽습니다.
접근성과 호환성도 PNG 형식의 주요 장점입니다. PNG 파일은 단색에서 알파 투명도가 있는 트루컬러까지 다양한 색상을 지원하므로 간단한 웹 그래픽에서 고품질 인쇄물까지 다양한 애플리케이션에서 사용할 수 있습니다. 다양한 플랫폼과 소프트웨어 간의 상호 운용성을 통해 PNG 형식으로 저장된 이미지를 호환성 문제에 대한 우려 없이 쉽게 공유하고 볼 수 있습니다.
기술적 진보와 커뮤니티 기여는 PNG 형식을 지속적으로 향상시키고 있습니다. APNG(Animated Portable Network Graphics)와 같은 혁신은 표준 PNG 뷰어와의 하위 호환성을 유지하면서 애니메이션 지원을 도입합니다. 이러한 진화는 이 형식의 적응성과 사용자 요구에 대응하여 기능을 확장하려는 활발한 커뮤니티의 노력을 반영합니다. 이러한 개발은 빠르게 진화하는 디지털 환경에서 PNG의 지속적인 관련성을 보장합니다.
결론적으로 PNG 이미지 형식은 품질 보존과 파일 크기 효율성 사이의 균형을 맞추어 디지털 이미지 공유 및 저장의 필수 요소가 되었습니다. 높은 색상 깊이, 알파 투명도, 무손실 압축을 지원하는 기능은 웹 디자인에서 보관 저장까지 다양한 애플리케이션에 다목적으로 사용할 수 있게 합니다. 모든 상황에 최적의 선택은 아니지만 품질, 호환성, 법적 자유의 장점은 디지털 이미징 세계에서 귀중한 자산이 됩니다.
이 변환기는 전적으로 브라우저에서 실행됩니다. 파일을 선택하면 메모리로 읽어와 선택한 형식으로 변환됩니다. 그런 다음 변환된 파일을 다운로드할 수 있습니다.
변환은 즉시 시작되며 대부분의 파일은 1초 이내에 변환됩니다. 파일이 크면 더 오래 걸릴 수 있습니다.
파일은 서버에 업로드되지 않습니다. 브라우저에서 변환된 다음 변환된 파일이 다운로드됩니다. 우리는 귀하의 파일을 절대 보지 않습니다.
JPEG, PNG, GIF, WebP, SVG, BMP, TIFF 등을 포함한 모든 이미지 형식 간의 변환을 지원합니다.
이 변환기는 완전히 무료이며 항상 무료입니다. 브라우저에서 실행되기 때문에 서버 비용을 지불할 필요가 없으므로 비용을 청구할 필요가 없습니다.
예! 한 번에 원하는 만큼 많은 파일을 변환할 수 있습니다. 추가할 때 여러 파일을 선택하기만 하면 됩니다.