OCR de n'importe quel PNG48

Tâches illimitées. Taille du fichier jusqu'à 2.5GB. Gratuit, pour toujours.

Tout en local

Notre convertisseur s'exécute dans votre navigateur, donc nous ne voyons jamais vos données.

Ultra rapide

Pas de téléversement de vos fichiers sur un serveur - les conversions commencent instantanément.

Sécurisé par défaut

Contrairement aux autres convertisseurs, vos fichiers ne sont jamais téléversés vers nous.

La reconnaissance optique de caractères (OCR) transforme les images de texte (scans, photos de smartphone, PDF) en chaînes de caractères lisibles par machine et, de plus en plus, en données structurées. L'OCR moderne est un pipeline qui nettoie une image, trouve du texte, le lit et exporte des métadonnées riches afin que les systèmes en aval puissent rechercher, indexer ou extraire des champs. Deux normes de sortie largement utilisées sont hOCR, un microformat HTML pour le texte et la mise en page, et ALTO XML, un schéma orienté bibliothèque/archives ; tous deux préservent les positions, l'ordre de lecture et d'autres indices de mise en page et sont pris en charge par des moteurs populaires comme Tesseract.

Un tour rapide du pipeline

Prétraitement. La qualité de l'OCR commence par le nettoyage de l'image : conversion en niveaux de gris, débruitage, seuillage (binarisation) et redressement. Les tutoriels canoniques d'OpenCV couvrent le seuillage global, adaptatif et d'Otsu — des incontournables pour les documents avec un éclairage non uniforme ou des histogrammes bimodaux. Lorsque l'éclairage varie au sein d'une page (pensez aux photos de téléphone), les méthodes adaptatives surpassent souvent un seuil global unique ; Otsu choisit automatiquement un seuil en analysant l'histogramme. La correction de l'inclinaison est tout aussi importante : le redressement basé sur Hough (Transformée de Hough) associé à la binarisation d'Otsu est une recette courante et efficace dans les pipelines de prétraitement de production.

Détection vs. reconnaissance. L'OCR est généralement divisé en détection de texte (où se trouve le texte ?) et reconnaissance de texte (que dit-il ?). Dans les scènes naturelles et de nombreux scans, les détecteurs entièrement convolutifs comme EAST prédisent efficacement des quadrilatères au niveau du mot ou de la ligne sans étapes de proposition lourdes et sont implémentés dans des boîtes à outils courantes (par exemple, le tutoriel de détection de texte d'OpenCV). Sur les pages complexes (journaux, formulaires, livres), la segmentation des lignes/régions et l'inférence de l'ordre de lecture sont importantes :Kraken implémente la segmentation traditionnelle de zones/lignes et la segmentation neuronale de ligne de base, avec un support explicite pour différents scripts et directions (LTR/RTL/vertical).

Modèles de reconnaissance. Le classique cheval de bataille open-source Tesseract (open-sourcé par Google, avec des racines chez HP) a évolué d'un classifieur de caractères en un reconnaisseur de séquence basé sur LSTM et peut émettre des PDF consultables, des sorties compatibles hOCR/ALTO, et plus encore depuis la CLI. Les reconnaisseurs modernes s'appuient sur la modélisation de séquence sans caractères pré-segmentés. La classification temporelle connexionniste (CTC) reste fondamentale, apprenant les alignements entre les séquences de caractéristiques d'entrée et les chaînes d'étiquettes de sortie ; elle est largement utilisée dans les pipelines d'écriture manuscrite et de texte de scène.

Ces dernières années, les Transformers ont remodelé l'OCR. TrOCR utilise un encodeur Vision Transformer plus un décodeur Text Transformer, entraîné sur de grands corpus synthétiques puis affiné sur des données réelles, avec de solides performances sur les benchmarks de texte imprimé, manuscrit et de scène (voir aussi la documentation de Hugging Face). En parallèle, certains systèmes contournent l'OCR pour la compréhension en aval : Donut (Document Understanding Transformer) est un encodeur-décodeur sans OCR qui produit directement des réponses structurées (comme du JSON clé-valeur) à partir d'images de documents (repo, carte de modèle), évitant l'accumulation d'erreurs lorsqu'une étape OCR distincte alimente un système d'IE.

Moteurs et bibliothèques

Si vous voulez une lecture de texte clés en main sur de nombreux scripts, EasyOCR offre une API simple avec plus de 80 modèles linguistiques, renvoyant des boîtes, du texte et des confiances — pratique pour les prototypes et les scripts non latins. Pour les documents historiques, Kraken brille par sa segmentation de ligne de base et son ordre de lecture sensible au script ; pour un entraînement flexible au niveau de la ligne, Calamari s'appuie sur la lignée d'Ocropy (Ocropy) avec des reconnaisseurs (multi-)LSTM+CTC et une CLI pour affiner des modèles personnalisés.

Ensembles de données et benchmarks

La généralisation dépend des données. Pour l'écriture manuscrite, la base de données d'écriture manuscrite IAM fournit des phrases en anglais de divers scripteurs pour l'entraînement et l'évaluation ; c'est un ensemble de référence de longue date pour la reconnaissance de lignes et de mots. Pour le texte de scène, COCO-Text a superposé des annotations étendues sur MS-COCO, avec des étiquettes pour l'imprimé/manuscrit, lisible/illisible, le script et les transcriptions complètes (voir aussi la page originale du projet). Le domaine s'appuie également fortement sur le pré-entraînement synthétique : SynthText in the Wild rend le texte dans des photographies avec une géométrie et un éclairage réalistes, fournissant d'énormes volumes de données pour pré-entraîner les détecteurs et les reconnaisseurs (référence code et données).

Les compétitions sous l'égide de la lecture robuste d'ICDAR maintiennent l'évaluation sur le terrain. Les tâches récentes mettent l'accent sur la détection/lecture de bout en bout et incluent la liaison de mots en phrases, avec le code officiel rapportant précision/rappel/F-score, l'intersection sur l'union (IoU) et les métriques de distance d'édition au niveau du caractère — reflétant ce que les praticiens devraient suivre.

Formats de sortie et utilisation en aval

L'OCR se termine rarement par du texte brut. Les archives et les bibliothèques numériques préfèrent ALTO XML car il encode la mise en page physique (blocs/lignes/mots avec coordonnées) ainsi que le contenu, et il se marie bien avec l'empaquetage METS. Le microformat hOCR , en revanche, intègre la même idée dans HTML/CSS en utilisant des classes comme ocr_line et ocrx_word, ce qui facilite l'affichage, la modification et la transformation avec des outils web. Tesseract expose les deux — par exemple, en générant du hOCR ou des PDF consultables directement depuis la CLI (guide de sortie PDF) ; les wrappers Python comme pytesseract ajoutent de la commodité. Il existe des convertisseurs pour traduire entre hOCR et ALTO lorsque les dépôts ont des normes d'ingestion fixes — voir cette liste organisée d' outils de format de fichier OCR.

Conseils pratiques

  • Commencez par les données et la propreté. Si vos images sont des photos de téléphone ou des scans de qualité mixte, investissez dans le seuillage (adaptatif et Otsu) et le redressement (Hough) avant tout réglage de modèle. Vous gagnerez souvent plus d'une recette de prétraitement robuste que de changer de reconnaisseurs.
  • Choisissez le bon détecteur. Pour les pages numérisées avec des colonnes régulières, un segmenteur de page (zones → lignes) peut suffire ; pour les images naturelles, les détecteurs à un seul coup comme EAST sont de solides bases de référence et se branchent sur de nombreuses boîtes à outils (exemple OpenCV).
  • Choisissez un reconnaisseur qui correspond à votre texte. Pour le latin imprimé, Tesseract (LSTM/OEM) est robuste et rapide ; pour les multi-scripts ou les prototypes rapides, EasyOCR est productif ; pour l'écriture manuscrite ou les polices de caractères historiques, envisagez Kraken ou Calamari et prévoyez un réglage fin. Si vous avez besoin d'un couplage étroit avec la compréhension de documents (extraction clé-valeur, VQA), évaluez TrOCR (OCR) par rapport à Donut (sans OCR) sur votre schéma — Donut peut supprimer une étape d'intégration entière.
  • Mesurez ce qui compte. Pour les systèmes de bout en bout, rapportez la détection F-score et la reconnaissance CER/WER (tous deux basés sur la distance d'édition de Levenshtein ; voir CTC) ; pour les tâches lourdes en mise en page, suivez l'IoU/l'étroitesse et la distance d'édition normalisée au niveau du caractère comme dans les kits d'évaluation ICDAR RRC .
  • Exportez des sorties riches. Préférez hOCR /ALTO (ou les deux) afin de conserver les coordonnées et l'ordre de lecture — vital pour la mise en surbrillance des résultats de recherche, l'extraction de tableaux/champs et la provenance. La CLI de Tesseract et pytesseract en font une seule ligne.

Regarder vers l'avenir

La tendance la plus forte est la convergence : la détection, la reconnaissance, la modélisation du langage et même le décodage spécifique à la tâche fusionnent dans des piles de Transformers unifiées. Le pré-entraînement sur de grands corpus synthétiques reste un multiplicateur de force. Les modèles sans OCR seront en concurrence agressive partout où la cible est des sorties structurées plutôt que des transcriptions littérales. Attendez-vous également à des déploiements hybrides : un détecteur léger plus un reconnaisseur de style TrOCR pour le texte long, et un modèle de style Donut pour les formulaires et les reçus.

Lectures complémentaires et outils

Tesseract (GitHub) · Documentation de Tesseract · Spécification hOCR · Contexte ALTO · Détecteur EAST · Détection de texte OpenCV · TrOCR · Donut · COCO-Text · SynthText · Kraken · Calamari OCR · ICDAR RRC · pytesseract · Écriture manuscrite IAM · Outils de format de fichier OCR · EasyOCR

Questions Fréquemment Posées

Qu'est-ce que l'OCR ?

La reconnaissance optique de caractères (OCR) est une technologie utilisée pour convertir différents types de documents, tels que des documents papier numérisés, des fichiers PDF ou des images capturées par un appareil photo numérique, en données modifiables et recherchables.

Comment fonctionne l'OCR ?

L'OCR fonctionne en numérisant une image ou un document d'entrée, en segmentant l'image en caractères individuels, et en comparant chaque caractère avec une base de données de formes de caractères en utilisant la reconnaissance de formes ou la reconnaissance de caractéristiques.

Quelles sont les applications pratiques de l'OCR ?

L'OCR est utilisé dans une variété de secteurs et d'applications, y compris la numérisation de documents imprimés, l'activation des services de texte en parole, l'automatisation des processus de saisie de données, et l'aide aux utilisateurs malvoyants pour mieux interagir avec le texte.

L'OCR est-il toujours précis à 100% ?

Bien que des progrès importants aient été faits dans la technologie OCR, elle n'est pas infaillible. La précision peut varier en fonction de la qualité du document original et des spécificités du logiciel OCR utilisé.

L'OCR peut-il reconnaître l'écriture manuelle ?

Bien que l'OCR soit principalement conçu pour le texte imprimé, certains systèmes OCR avancés sont également capables de reconnaître une écriture manuelle claire et cohérente. Cependant, la reconnaissance de l'écriture manuelle est généralement moins précise en raison de la grande variation des styles d'écriture individuels.

L'OCR peut-il gérer plusieurs langues ?

Oui, de nombreux systèmes logiciels OCR peuvent reconnaître plusieurs langues. Cependant, il est important de s'assurer que la langue spécifique est prise en charge par le logiciel que vous utilisez.

Quelle est la différence entre l'OCR et l'ICR ?

OCR signifie Optical Character Recognition et est utilisé pour reconnaître le texte imprimé, tandis que ICR, ou Intelligent Character Recognition, est plus avancé et est utilisé pour reconnaître le texte écrit à la main.

L'OCR fonctionne-t-il avec toutes les polices et tailles de texte ?

L'OCR fonctionne mieux avec des polices claires et faciles à lire et des tailles de texte standard. Bien qu'il puisse fonctionner avec différentes polices et tailles, la précision a tendance à diminuer lorsqu'on traite des polices inhabituelles ou des tailles de texte très petites.

Quelles sont les limites de la technologie OCR ?

L'OCR peut avoir du mal avec les documents de faible résolution, les polices complexes, les textes mal imprimés, l'écriture manuelle, et les documents avec des arrière-plans qui interfèrent avec le texte. De plus, bien qu'il puisse fonctionner avec de nombreuses langues, il ne couvre peut-être pas parfaitement toutes les langues.

L'OCR peut-il numériser du texte en couleur ou des arrière-plans en couleur ?

Oui, l'OCR peut numériser du texte en couleur et des arrière-plans en couleur, bien qu'il soit généralement plus efficace avec des combinaisons de couleurs à contraste élevé, comme le texte noir sur un fond blanc. La précision peut diminuer lorsque les couleurs du texte et de l'arrière-plan manquent de contraste suffisant.

Qu'est-ce que le format PNG48 ?

48 bits RVB opaque ou transparent binaire

L'évolution des formats d'image au fil des ans a été significative, portée par la demande croissante de qualité visuelle supérieure et de techniques de compression de données plus efficaces. Parmi ces développements, le format d'image PLASMA se distingue, offrant un mélange unique de taux de compression élevés, de prise en charge d'une large gamme de couleurs et d'une approche adaptable de l'encodage d'image qui le rend particulièrement efficace pour une utilisation sur le Web et les écrans haute définition. L'une des principales caractéristiques qui distingue PLASMA des autres formats d'image est son algorithme de compression avancé, conçu pour réduire la taille des fichiers sans compromettre la qualité de l'image.

La technologie de compression derrière PLASMA repose sur une méthode sophistiquée connue sous le nom de « quantification perceptive », qui tire parti des caractéristiques du système visuel humain. Contrairement aux méthodes de compression traditionnelles qui réduisent uniformément les données sur une image, la quantification perceptive compresse sélectivement les zones de l'image où l'œil est moins susceptible de remarquer des différences. Cette approche permet aux images PLASMA de maintenir un haut niveau de fidélité visuelle, même à des débits binaires inférieurs, en équilibrant efficacement l'efficacité de la compression et la qualité de l'image.

Une autre caractéristique notable du format PLASMA est sa prise en charge d'une large gamme de couleurs. Cela signifie qu'il peut représenter avec précision un spectre de couleurs plus large que les anciens formats d'image. Cette capacité est cruciale pour la photographie professionnelle, l'art numérique et toute application où la précision des couleurs est primordiale. PLASMA y parvient en incorporant des profils de couleurs avancés qui prennent en charge les derniers espaces colorimétriques, tels qu'Adobe RGB et ProPhoto RGB, garantissant que les couleurs affichées sont aussi fidèles que possible à l'original.

L'encodage adaptatif est une autre pierre angulaire de la conception du format d'image PLASMA. Cette technique permet au format d'ajuster dynamiquement la façon dont il encode les données en fonction du contenu de l'image. Par exemple, il peut reconnaître et encoder efficacement des motifs ou des textures répétitifs, tout en appliquant un encodage plus détaillé aux zones complexes ou très détaillées. Cette adaptabilité améliore non seulement la compression, mais garantit également que les détails importants sont préservés, ce qui en fait un excellent choix pour un large éventail d'applications, des images Web aux peintures numériques détaillées.

Outre ses atouts techniques, PLASMA intègre également plusieurs fonctionnalités visant à améliorer l'expérience utilisateur et la convivialité. Parmi celles-ci figure l'option de chargement progressif, qui permet d'afficher les images à une qualité inférieure dans un premier temps, puis d'augmenter progressivement les détails. Cette fonctionnalité est particulièrement bénéfique pour une utilisation sur le Web, permettant aux sites Web de se charger plus rapidement tout en affichant toujours les images en pleine qualité. Le chargement progressif fait également de PLASMA un bon choix pour les environnements mobiles, où la bande passante peut être limitée et les temps de chargement doivent être aussi courts que possible.

La sécurité et la protection des droits d'auteur font également partie intégrante du format PLASMA. Le contenu numérique étant de plus en plus partagé et réutilisé, la violation des droits d'auteur est devenue une préoccupation majeure pour les créateurs. PLASMA résout ce problème grâce au tatouage numérique intégré et aux capacités d'avis de droit d'auteur. Ces fonctionnalités permettent aux créateurs d'intégrer des filigranes invisibles ou des avis de droit d'auteur visibles directement dans le fichier image, ajoutant une couche de protection supplémentaire tout en garantissant que les informations sont conservées même lorsque l'image est compressée.

La compatibilité de PLASMA avec les technologies et les plates-formes existantes est un autre aspect critique de sa conception. Comprenant l'importance de l'interopérabilité, les développeurs de PLASMA ont veillé à ce qu'il puisse être facilement intégré aux normes Web actuelles et aux logiciels de retouche d'image. Cet effort comprend le développement de plugins et d'extensions pour les logiciels graphiques populaires, ce qui permet aux artistes et aux concepteurs d'adopter facilement PLASMA dans leurs flux de travail. De plus, les navigateurs Web et les applications mobiles peuvent facilement prendre en charge les images PLASMA sans changements significatifs, facilitant ainsi leur adoption généralisée.

Sous le capot, PLASMA exploite une structure de fichiers unique qui optimise à la fois le stockage et l'efficacité de l'accès. Le format est conçu pour séparer les données d'image en couches et en segments, permettant un accès granulaire à des parties spécifiques de l'image sans avoir besoin de décoder l'intégralité du fichier. Cette structure améliore non seulement les temps de chargement, mais permet également des fonctionnalités avancées telles que des résolutions évolutives et une édition sélective. Par exemple, un utilisateur peut ajuster la balance des couleurs d'un segment spécifique d'une image sans affecter le reste, offrant un contrôle et une flexibilité sans précédent.

Le format d'image PLASMA répond également aux défis de l'imagerie HDR (High Dynamic Range), qui nécessite de gérer une large gamme de niveaux de luminosité, des ombres les plus sombres aux reflets les plus brillants. Les algorithmes d'encodage de PLASMA sont spécialement conçus pour gérer efficacement les niveaux de luminance étendus caractéristiques du contenu HDR. Cette capacité garantit que les images PLASMA peuvent reproduire fidèlement toute la gamme de luminosité et de contraste observée dans les scènes du monde réel, ce qui les rend particulièrement adaptées aux écrans de nouvelle génération et à la photographie professionnelle.

Les efforts de normalisation et de promotion de l'adoption de PLASMA sont en cours, menés par un consortium de leaders de l'industrie de la photographie, de l'art numérique et de la technologie. Cette collaboration vise à établir PLASMA comme un format universel capable de répondre aux divers besoins de diverses industries tout en repoussant les limites de ce qui peut être réalisé en imagerie numérique. En travaillant ensemble, ces parties prenantes espèrent créer un écosystème où PLASMA devient synonyme d'imagerie numérique de haute qualité, efficace et polyvalente.

Un domaine dans lequel PLASMA est particulièrement prometteur est celui de la préservation des archives. Son efficacité de compression élevée, combinée à une qualité d'image sans perte, en fait un candidat idéal pour stocker de vastes collections d'images numériques d'une manière qui économise de l'espace sans sacrifier les détails. Les bibliothèques, les musées et autres institutions qui nécessitent une conservation numérique à long terme peuvent grandement bénéficier de l'adoption de PLASMA, car il offre une solution durable aux défis du stockage et de l'accès à de grandes quantités d'images haute résolution.

Malgré ses nombreux avantages, la transition vers l'utilisation de PLASMA n'est pas sans défis. La compatibilité avec les systèmes et les flux de travail hérités est un sujet de préoccupation particulier. De nombreuses organisations et individus s'appuient sur des formats d'image établis et peuvent hésiter à adopter une nouvelle norme qui nécessite la mise à jour des logiciels ou la modification des processus existants. Pour atténuer ces préoccupations, l'équipe de développement de PLASMA s'est efforcée de garantir que le format soit rétrocompatible dans la mesure du possible et a fourni une suite d'outils et de ressources de conversion pour faciliter la transition.

Un autre défi auquel PLASMA est confronté est la nécessité d'une éducation et d'une sensibilisation généralisées sur ses avantages et ses capacités. En tant que format relativement nouveau, il est en concurrence avec des normes bien établies avec lesquelles les utilisateurs sont déjà à l'aise. Pour y remédier, des campagnes de sensibilisation complètes sont menées, visant à présenter les performances supérieures et la polyvalence de PLASMA. Ces efforts comprennent des tutoriels, des webinaires et des collaborations avec des artistes et des professionnels influents qui peuvent démontrer les avantages de PLASMA dans des applications du monde réel.

Pour l'avenir, l'avenir du format d'image PLASMA semble prometteur. Alors que la technologie d'imagerie numérique continue d'évoluer, le besoin de formats capables de fournir des solutions de haute qualité, efficaces et adaptables se fait de plus en plus sentir. Avec ses fonctionnalités avancées et ses efforts continus pour améliorer l'accessibilité et l'adoption, PLASMA est bien placé pour relever ces défis. Que ce soit pour la photographie professionnelle, la conception Web ou l'art numérique, PLASMA offre un choix convaincant pour tous ceux qui cherchent à repousser les limites de ce qui est possible en imagerie numérique.

En conclusion, le format d'image PLASMA représente une avancée significative dans le domaine de l'imagerie numérique. En mettant l'accent sur une efficacité de compression élevée, une prise en charge d'une large gamme de couleurs, une adaptabilité et des fonctionnalités conviviales, PLASMA offre une solution complète qui répond aux besoins d'un large éventail d'applications. Malgré les défis liés à l'adoption et à l'éducation, les efforts de collaboration des leaders de l'industrie et les avantages inhérents au format en font un concurrent de poids dans l'évolution continue des normes d'image. Alors que la technologie continue de progresser, l'approche innovante de PLASMA en matière de compression et de qualité d'image, combinée à ses fonctionnalités tournées vers l'avenir, le distingue comme un format conçu pour l'avenir des

Formats supportés

AAI.aai

Image AAI Dune

AI.ai

Adobe Illustrator CS2

AVIF.avif

Format de fichier d'image AV1

AVS.avs

Image AVS X

BAYER.bayer

Image Bayer brute

BMP.bmp

Image bitmap Windows

CIN.cin

Fichier image Cineon

CLIP.clip

Masque d'image Clip

CMYK.cmyk

Échantillons cyan, magenta, jaune et noir bruts

CMYKA.cmyka

Échantillons cyan, magenta, jaune, noir et alpha bruts

CUR.cur

Icône Microsoft

DCX.dcx

ZSoft IBM PC Paintbrush multi-page

DDS.dds

Microsoft DirectDraw Surface

DPX.dpx

Image SMTPE 268M-2003 (DPX 2.0)

DXT1.dxt1

Microsoft DirectDraw Surface

EPDF.epdf

Format de document portable encapsulé

EPI.epi

Format d'échange encapsulé PostScript Adobe

EPS.eps

PostScript encapsulé Adobe

EPSF.epsf

PostScript encapsulé Adobe

EPSI.epsi

Format d'échange encapsulé PostScript Adobe

EPT.ept

PostScript encapsulé avec aperçu TIFF

EPT2.ept2

PostScript niveau II encapsulé avec aperçu TIFF

EXR.exr

Image à gamme dynamique élevée (HDR)

FARBFELD.ff

Farbfeld

FF.ff

Farbfeld

FITS.fits

Système de transport d'images flexible

GIF.gif

Format d'échange de graphiques CompuServe

GIF87.gif87

Format d'échange de graphiques CompuServe (version 87a)

GROUP4.group4

CCITT Groupe 4 brut

HDR.hdr

Image à gamme dynamique élevée

HRZ.hrz

Télévision à balayage lent

ICO.ico

Icône Microsoft

ICON.icon

Icône Microsoft

IPL.ipl

Image d'emplacement IP2

J2C.j2c

Flux JPEG-2000

J2K.j2k

Flux JPEG-2000

JNG.jng

JPEG Network Graphics

JP2.jp2

Syntaxe du format de fichier JPEG-2000

JPC.jpc

Flux JPEG-2000

JPE.jpe

Format JFIF du groupe mixte d'experts photographiques

JPEG.jpeg

Format JFIF du groupe mixte d'experts photographiques

JPG.jpg

Format JFIF du groupe mixte d'experts photographiques

JPM.jpm

Syntaxe du format de fichier JPEG-2000

JPS.jps

Format JPS du groupe mixte d'experts photographiques

JPT.jpt

Syntaxe du format de fichier JPEG-2000

JXL.jxl

Image JPEG XL

MAP.map

Base de données d'images multi-résolutions sans couture (MrSID)

MAT.mat

Format d'image MATLAB niveau 5

PAL.pal

Palette Palm

PALM.palm

Palette Palm

PAM.pam

Format de bitmap 2D commun

PBM.pbm

Format de bitmap portable (noir et blanc)

PCD.pcd

Photo CD

PCDS.pcds

Photo CD

PCT.pct

Apple Macintosh QuickDraw/PICT

PCX.pcx

ZSoft IBM PC Paintbrush

PDB.pdb

Format ImageViewer de base de données Palm

PDF.pdf

Format de document portable

PDFA.pdfa

Format d'archive de document portable

PFM.pfm

Format portable à virgule flottante

PGM.pgm

Format de bitmap portable (niveaux de gris)

PGX.pgx

Format JPEG 2000 non compressé

PICON.picon

Icône personnelle

PICT.pict

Apple Macintosh QuickDraw/PICT

PJPEG.pjpeg

Format JFIF du groupe mixte d'experts photographiques

PNG.png

Portable Network Graphics

PNG00.png00

PNG héritant de la profondeur de bits, du type de couleur de l'image d'origine

PNG24.png24

24 bits RVB opaque ou transparent binaire (zlib 1.2.11)

PNG32.png32

32 bits RVB opaque ou transparent binaire

PNG48.png48

48 bits RVB opaque ou transparent binaire

PNG64.png64

64 bits RVB opaque ou transparent binaire

PNG8.png8

8 bits indexé opaque ou transparent binaire

PNM.pnm

Portable anymap

PPM.ppm

Format de pixmap portable (couleur)

PS.ps

Fichier PostScript Adobe

PSB.psb

Format de grand document Adobe

PSD.psd

Bitmap Photoshop Adobe

RGB.rgb

Échantillons rouge, vert et bleu bruts

RGBA.rgba

Échantillons rouge, vert, bleu et alpha bruts

RGBO.rgbo

Échantillons rouge, vert, bleu et opacité bruts

SIX.six

Format de graphiques SIXEL DEC

SUN.sun

Fichier Rasterfile Sun

SVG.svg

Graphiques vectoriels adaptables

SVGZ.svgz

Graphiques vectoriels adaptables compressés

TIFF.tiff

Format de fichier d'image balisée

VDA.vda

Image Truevision Targa

VIPS.vips

Image VIPS

WBMP.wbmp

Image sans fil Bitmap (niveau 0)

WEBP.webp

Format d'image WebP

YUV.yuv

CCIR 601 4:1:1 ou 4:2:2

Foire aux questions

Comment ça marche ?

Ce convertisseur fonctionne entièrement dans votre navigateur. Lorsque vous sélectionnez un fichier, il est lu en mémoire et converti dans le format sélectionné. Vous pouvez ensuite télécharger le fichier converti.

Combien de temps prend la conversion d'un fichier ?

Les conversions commencent instantanément, et la plupart des fichiers sont convertis en moins d'une seconde. Les fichiers plus volumineux peuvent prendre plus de temps.

Que deviennent mes fichiers ?

Vos fichiers ne sont jamais téléversés vers nos serveurs. Ils sont convertis dans votre navigateur, puis le fichier converti est téléchargé. Nous ne voyons jamais vos fichiers.

Quels types de fichiers puis-je convertir ?

Nous prenons en charge la conversion entre tous les formats d'image, y compris JPEG, PNG, GIF, WebP, SVG, BMP, TIFF, et plus encore.

Combien cela coûte ?

Ce convertisseur est complètement gratuit, et le restera toujours. Parce qu'il fonctionne dans votre navigateur, nous n'avons pas besoin de payer pour des serveurs, donc nous n'avons pas besoin de vous faire payer.

Puis-je convertir plusieurs fichiers à la fois ?

Oui ! Vous pouvez convertir autant de fichiers que vous voulez simultanément. Il suffit de sélectionner plusieurs fichiers lorsque vous les ajoutez.