OCR de n'importe quel MAP

Déposez une photo, un scan ou un PDF (jusqu'à 2.5 Go). Nous extrayons le texte directement dans votre navigateur — gratuit, illimité et vos fichiers ne quittent jamais votre appareil.

Privé et sécurisé

Tout se passe dans votre navigateur. Vos fichiers ne touchent jamais nos serveurs.

Ultra rapide

Pas de téléchargement, pas d'attente. Convertissez au moment où vous déposez un fichier.

Vraiment gratuit

Aucun compte requis. Pas de coûts cachés. Pas d'astuces sur la taille des fichiers.

La reconnaissance optique de caractères (OCR) transforme les images de texte (scans, photos de smartphone, PDF) en chaînes de caractères lisibles par machine et, de plus en plus, en données structurées. L'OCR moderne est un pipeline qui nettoie une image, trouve du texte, le lit et exporte des métadonnées riches afin que les systèmes en aval puissent rechercher, indexer ou extraire des champs. Deux normes de sortie largement utilisées sont hOCR, un microformat HTML pour le texte et la mise en page, et ALTO XML, un schéma orienté bibliothèque/archives ; tous deux préservent les positions, l'ordre de lecture et d'autres indices de mise en page et sont pris en charge par des moteurs populaires comme Tesseract.

Un tour rapide du pipeline

Prétraitement. La qualité de l'OCR commence par le nettoyage de l'image : conversion en niveaux de gris, débruitage, seuillage (binarisation) et redressement. Les tutoriels canoniques d'OpenCV couvrent le seuillage global, adaptatif et d'Otsu — des incontournables pour les documents avec un éclairage non uniforme ou des histogrammes bimodaux. Lorsque l'éclairage varie au sein d'une page (pensez aux photos de téléphone), les méthodes adaptatives surpassent souvent un seuil global unique ; Otsu choisit automatiquement un seuil en analysant l'histogramme. La correction de l'inclinaison est tout aussi importante : le redressement basé sur Hough (Transformée de Hough) associé à la binarisation d'Otsu est une recette courante et efficace dans les pipelines de prétraitement de production.

Détection vs. reconnaissance. L'OCR est généralement divisé en détection de texte (où se trouve le texte ?) et reconnaissance de texte (que dit-il ?). Dans les scènes naturelles et de nombreux scans, les détecteurs entièrement convolutifs comme EAST prédisent efficacement des quadrilatères au niveau du mot ou de la ligne sans étapes de proposition lourdes et sont implémentés dans des boîtes à outils courantes (par exemple, le tutoriel de détection de texte d'OpenCV). Sur les pages complexes (journaux, formulaires, livres), la segmentation des lignes/régions et l'inférence de l'ordre de lecture sont importantes :Kraken implémente la segmentation traditionnelle de zones/lignes et la segmentation neuronale de ligne de base, avec un support explicite pour différents scripts et directions (LTR/RTL/vertical).

Modèles de reconnaissance. Le classique cheval de bataille open-source Tesseract (open-sourcé par Google, avec des racines chez HP) a évolué d'un classifieur de caractères en un reconnaisseur de séquence basé sur LSTM et peut émettre des PDF consultables, des sorties compatibles hOCR/ALTO, et plus encore depuis la CLI. Les reconnaisseurs modernes s'appuient sur la modélisation de séquence sans caractères pré-segmentés. La classification temporelle connexionniste (CTC) reste fondamentale, apprenant les alignements entre les séquences de caractéristiques d'entrée et les chaînes d'étiquettes de sortie ; elle est largement utilisée dans les pipelines d'écriture manuscrite et de texte de scène.

Ces dernières années, les Transformers ont remodelé l'OCR. TrOCR utilise un encodeur Vision Transformer plus un décodeur Text Transformer, entraîné sur de grands corpus synthétiques puis affiné sur des données réelles, avec de solides performances sur les benchmarks de texte imprimé, manuscrit et de scène (voir aussi la documentation de Hugging Face). En parallèle, certains systèmes contournent l'OCR pour la compréhension en aval : Donut (Document Understanding Transformer) est un encodeur-décodeur sans OCR qui produit directement des réponses structurées (comme du JSON clé-valeur) à partir d'images de documents (repo, carte de modèle), évitant l'accumulation d'erreurs lorsqu'une étape OCR distincte alimente un système d'IE.

Moteurs et bibliothèques

Si vous voulez une lecture de texte clés en main sur de nombreux scripts, EasyOCR offre une API simple avec plus de 80 modèles linguistiques, renvoyant des boîtes, du texte et des confiances — pratique pour les prototypes et les scripts non latins. Pour les documents historiques, Kraken brille par sa segmentation de ligne de base et son ordre de lecture sensible au script ; pour un entraînement flexible au niveau de la ligne, Calamari s'appuie sur la lignée d'Ocropy (Ocropy) avec des reconnaisseurs (multi-)LSTM+CTC et une CLI pour affiner des modèles personnalisés.

Ensembles de données et benchmarks

La généralisation dépend des données. Pour l'écriture manuscrite, la base de données d'écriture manuscrite IAM fournit des phrases en anglais de divers scripteurs pour l'entraînement et l'évaluation ; c'est un ensemble de référence de longue date pour la reconnaissance de lignes et de mots. Pour le texte de scène, COCO-Text a superposé des annotations étendues sur MS-COCO, avec des étiquettes pour l'imprimé/manuscrit, lisible/illisible, le script et les transcriptions complètes (voir aussi la page originale du projet). Le domaine s'appuie également fortement sur le pré-entraînement synthétique : SynthText in the Wild rend le texte dans des photographies avec une géométrie et un éclairage réalistes, fournissant d'énormes volumes de données pour pré-entraîner les détecteurs et les reconnaisseurs (référence code et données).

Les compétitions sous l'égide de la lecture robuste d'ICDAR maintiennent l'évaluation sur le terrain. Les tâches récentes mettent l'accent sur la détection/lecture de bout en bout et incluent la liaison de mots en phrases, avec le code officiel rapportant précision/rappel/F-score, l'intersection sur l'union (IoU) et les métriques de distance d'édition au niveau du caractère — reflétant ce que les praticiens devraient suivre.

Formats de sortie et utilisation en aval

L'OCR se termine rarement par du texte brut. Les archives et les bibliothèques numériques préfèrent ALTO XML car il encode la mise en page physique (blocs/lignes/mots avec coordonnées) ainsi que le contenu, et il se marie bien avec l'empaquetage METS. Le microformat hOCR , en revanche, intègre la même idée dans HTML/CSS en utilisant des classes comme ocr_line et ocrx_word, ce qui facilite l'affichage, la modification et la transformation avec des outils web. Tesseract expose les deux — par exemple, en générant du hOCR ou des PDF consultables directement depuis la CLI (guide de sortie PDF) ; les wrappers Python comme pytesseract ajoutent de la commodité. Il existe des convertisseurs pour traduire entre hOCR et ALTO lorsque les dépôts ont des normes d'ingestion fixes — voir cette liste organisée d' outils de format de fichier OCR.

Conseils pratiques

  • Commencez par les données et la propreté. Si vos images sont des photos de téléphone ou des scans de qualité mixte, investissez dans le seuillage (adaptatif et Otsu) et le redressement (Hough) avant tout réglage de modèle. Vous gagnerez souvent plus d'une recette de prétraitement robuste que de changer de reconnaisseurs.
  • Choisissez le bon détecteur. Pour les pages numérisées avec des colonnes régulières, un segmenteur de page (zones → lignes) peut suffire ; pour les images naturelles, les détecteurs à un seul coup comme EAST sont de solides bases de référence et se branchent sur de nombreuses boîtes à outils (exemple OpenCV).
  • Choisissez un reconnaisseur qui correspond à votre texte. Pour le latin imprimé, Tesseract (LSTM/OEM) est robuste et rapide ; pour les multi-scripts ou les prototypes rapides, EasyOCR est productif ; pour l'écriture manuscrite ou les polices de caractères historiques, envisagez Kraken ou Calamari et prévoyez un réglage fin. Si vous avez besoin d'un couplage étroit avec la compréhension de documents (extraction clé-valeur, VQA), évaluez TrOCR (OCR) par rapport à Donut (sans OCR) sur votre schéma — Donut peut supprimer une étape d'intégration entière.
  • Mesurez ce qui compte. Pour les systèmes de bout en bout, rapportez la détection F-score et la reconnaissance CER/WER (tous deux basés sur la distance d'édition de Levenshtein ; voir CTC) ; pour les tâches lourdes en mise en page, suivez l'IoU/l'étroitesse et la distance d'édition normalisée au niveau du caractère comme dans les kits d'évaluation ICDAR RRC .
  • Exportez des sorties riches. Préférez hOCR /ALTO (ou les deux) afin de conserver les coordonnées et l'ordre de lecture — vital pour la mise en surbrillance des résultats de recherche, l'extraction de tableaux/champs et la provenance. La CLI de Tesseract et pytesseract en font une seule ligne.

Regarder vers l'avenir

La tendance la plus forte est la convergence : la détection, la reconnaissance, la modélisation du langage et même le décodage spécifique à la tâche fusionnent dans des piles de Transformers unifiées. Le pré-entraînement sur de grands corpus synthétiques reste un multiplicateur de force. Les modèles sans OCR seront en concurrence agressive partout où la cible est des sorties structurées plutôt que des transcriptions littérales. Attendez-vous également à des déploiements hybrides : un détecteur léger plus un reconnaisseur de style TrOCR pour le texte long, et un modèle de style Donut pour les formulaires et les reçus.

Lectures complémentaires et outils

Tesseract (GitHub) · Documentation de Tesseract · Spécification hOCR · Contexte ALTO · Détecteur EAST · Détection de texte OpenCV · TrOCR · Donut · COCO-Text · SynthText · Kraken · Calamari OCR · ICDAR RRC · pytesseract · Écriture manuscrite IAM · Outils de format de fichier OCR · EasyOCR

Questions Fréquemment Posées

Qu'est-ce que l'OCR ?

La reconnaissance optique de caractères (OCR) est une technologie utilisée pour convertir différents types de documents, tels que des documents papier numérisés, des fichiers PDF ou des images capturées par un appareil photo numérique, en données modifiables et recherchables.

Comment fonctionne l'OCR ?

L'OCR fonctionne en numérisant une image ou un document d'entrée, en segmentant l'image en caractères individuels, et en comparant chaque caractère avec une base de données de formes de caractères en utilisant la reconnaissance de formes ou la reconnaissance de caractéristiques.

Quelles sont les applications pratiques de l'OCR ?

L'OCR est utilisé dans une variété de secteurs et d'applications, y compris la numérisation de documents imprimés, l'activation des services de texte en parole, l'automatisation des processus de saisie de données, et l'aide aux utilisateurs malvoyants pour mieux interagir avec le texte.

L'OCR est-il toujours précis à 100% ?

Bien que des progrès importants aient été faits dans la technologie OCR, elle n'est pas infaillible. La précision peut varier en fonction de la qualité du document original et des spécificités du logiciel OCR utilisé.

L'OCR peut-il reconnaître l'écriture manuelle ?

Bien que l'OCR soit principalement conçu pour le texte imprimé, certains systèmes OCR avancés sont également capables de reconnaître une écriture manuelle claire et cohérente. Cependant, la reconnaissance de l'écriture manuelle est généralement moins précise en raison de la grande variation des styles d'écriture individuels.

L'OCR peut-il gérer plusieurs langues ?

Oui, de nombreux systèmes logiciels OCR peuvent reconnaître plusieurs langues. Cependant, il est important de s'assurer que la langue spécifique est prise en charge par le logiciel que vous utilisez.

Quelle est la différence entre l'OCR et l'ICR ?

OCR signifie Optical Character Recognition et est utilisé pour reconnaître le texte imprimé, tandis que ICR, ou Intelligent Character Recognition, est plus avancé et est utilisé pour reconnaître le texte écrit à la main.

L'OCR fonctionne-t-il avec toutes les polices et tailles de texte ?

L'OCR fonctionne mieux avec des polices claires et faciles à lire et des tailles de texte standard. Bien qu'il puisse fonctionner avec différentes polices et tailles, la précision a tendance à diminuer lorsqu'on traite des polices inhabituelles ou des tailles de texte très petites.

Quelles sont les limites de la technologie OCR ?

L'OCR peut avoir du mal avec les documents de faible résolution, les polices complexes, les textes mal imprimés, l'écriture manuelle, et les documents avec des arrière-plans qui interfèrent avec le texte. De plus, bien qu'il puisse fonctionner avec de nombreuses langues, il ne couvre peut-être pas parfaitement toutes les langues.

L'OCR peut-il numériser du texte en couleur ou des arrière-plans en couleur ?

Oui, l'OCR peut numériser du texte en couleur et des arrière-plans en couleur, bien qu'il soit généralement plus efficace avec des combinaisons de couleurs à contraste élevé, comme le texte noir sur un fond blanc. La précision peut diminuer lorsque les couleurs du texte et de l'arrière-plan manquent de contraste suffisant.

Qu'est-ce que le format MAP ?

Base de données d'images multi-résolutions sans couture (MrSID)

Le format de fichier M2V est principalement associé aux flux vidéo MPEG-2. MPEG-2 est une norme pour « le codage générique des images animées et des informations audio associées » qui décrit la combinaison de méthodes de compression vidéo et audio avec perte. Cette norme est largement utilisée dans la diffusion télévisée, les disques DVD et Blu-ray, les décodeurs et l'enregistrement vidéo numérique. Le format M2V stocke spécifiquement le composant de flux vidéo de MPEG-2, sans aucune donnée audio d'accompagnement. Cette séparation de la vidéo de l'audio permet une plus grande flexibilité dans le montage et la diffusion vidéo, où la piste audio peut être gérée séparément ou remplacée complètement.

MPEG-2 fait partie de la série de normes Motion Picture Experts Group (MPEG), qui comprend également MPEG-1, MPEG-4 et d'autres. MPEG-2 est considéré comme un successeur de la norme MPEG-1 et offre des améliorations de la qualité vidéo à des débits binaires plus élevés. La norme MPEG-2 comprend des aspects tels que les profils et les niveaux, qui définissent les capacités des décodeurs MPEG-2. Les profils sont des ensembles de fonctionnalités ciblant des applications spécifiques, tandis que les niveaux définissent la puissance de traitement maximale requise par l'application. Par exemple, le « Main Profile at Main Level » (MP@ML) est l'un des profils les plus couramment utilisés pour les diffusions télévisées en définition standard.

Le format M2V encapsule les données vidéo compressées à l'aide des techniques de compression avec perte de MPEG-2. Ces techniques incluent l'utilisation d'images intra-codées (images I), d'images prédictives (images P) et d'images prédictives bidirectionnelles (images B). Les images I sont autonomes et ne nécessitent pas d'autres images vidéo pour le décodage, ce qui en fait les images de référence pour les images P et B. Les images P peuvent utiliser les données des images I ou P précédentes pour réduire la quantité de données nécessaires, tandis que les images B peuvent utiliser les images I ou P précédentes et suivantes pour la réduction des données. Cette combinaison de types d'images permet à MPEG-2 de compresser efficacement la vidéo en stockant uniquement les modifications d'une image à l'autre, plutôt que de stocker chaque image dans son intégralité.

Le format M2V utilise une technique de compensation de mouvement par blocs pour compresser davantage les données vidéo. Cela implique de diviser chaque image en petits blocs, puis de comparer chaque bloc avec les blocs correspondants dans les images adjacentes pour détecter le mouvement. Lorsque le mouvement est détecté, seule la différence entre les blocs et les vecteurs de mouvement est encodée, plutôt que le bloc entier. Cette méthode est très efficace pour les séquences vidéo où une grande partie de la scène reste statique, car seules les parties mobiles doivent être encodées en détail.

Le format M2V prend en charge la vidéo entrelacée et progressive. La vidéo entrelacée est une technique utilisée pour augmenter la fréquence d'images perçue de la vidéo sans augmenter la fréquence d'images réelle. Elle le fait en alternant l'affichage des lignes impaires et paires de l'image, créant ainsi efficacement deux sous-images dans chaque image. Le balayage progressif, en revanche, affiche toutes les lignes de l'image en séquence, ce qui donne une image de meilleure qualité, en particulier sur les écrans modernes. Le format M2V peut gérer les deux types de vidéo, ce qui le rend polyvalent pour différentes technologies d'affichage et normes de diffusion.

La couleur dans les fichiers M2V est généralement représentée à l'aide de l'espace colorimétrique YCbCr, qui sépare les informations de luminosité (Y) des informations de couleur (Cb et Cr). Cette séparation est bénéfique pour la compression vidéo car l'œil humain est plus sensible à la luminosité qu'à la couleur. En conséquence, les informations de couleur peuvent être compressées plus fortement sans affecter de manière significative la qualité perçue de la vidéo. C'est ce qu'on appelle le sous-échantillonnage de la chrominance et c'est une technique courante utilisée dans la compression vidéo pour réduire la taille du fichier.

Le format M2V prend également en charge l'encodage à débit binaire variable (VBR), qui permet au débit binaire de changer en fonction de la complexité du contenu vidéo. Les scènes à forte complexité ou à mouvement rapide peuvent se voir attribuer un débit binaire plus élevé pour maintenir la qualité, tandis que les scènes plus simples peuvent être encodées avec un débit binaire plus faible pour économiser de l'espace. L'encodage VBR est plus efficace que l'encodage à débit binaire constant (CBR) car il s'adapte au contenu, mais il peut également être plus difficile à lire car le décodeur doit être capable de gérer les débits binaires variables.

L'audio n'est généralement pas inclus dans les fichiers M2V, car le format est conçu pour stocker uniquement des données vidéo. Cependant, les fichiers M2V sont souvent accompagnés de fichiers audio distincts, tels que des fichiers MP2 ou AC3, qui peuvent être synchronisés avec la vidéo pendant la lecture ou le montage. Cette séparation des flux audio et vidéo permet une plus grande flexibilité en post-production, où les pistes audio peuvent être éditées, remplacées ou mixées sans modifier le contenu vidéo.

Les fichiers M2V peuvent être créés à l'aide d'une variété de logiciels de montage et d'encodage vidéo. Pendant le processus d'encodage, l'utilisateur peut spécifier les profils et niveaux souhaités, la résolution, le rapport hauteur/largeur, la fréquence d'images et d'autres paramètres qui affectent la qualité et la compatibilité du fichier M2V résultant. La flexibilité des paramètres d'encodage fait de M2V un format adapté à un large éventail d'applications, de la diffusion professionnelle à la production vidéo grand public.

Malgré son utilisation répandue, le format M2V présente certaines limites. L'un des principaux inconvénients est le manque de prise en charge des normes de compression vidéo modernes telles que H.264 (MPEG-4 Part 10) ou H.265 (HEVC), qui offrent une compression plus efficace et une qualité supérieure à des débits binaires inférieurs. En conséquence, M2V est progressivement abandonné au profit de ces nouveaux formats, en particulier pour le contenu vidéo haute définition et les applications de streaming où l'efficacité de la bande passante est cruciale.

Une autre limitation du format M2V est sa susceptibilité aux erreurs lors de la transmission ou du stockage. Étant donné que M2V utilise une compression inter-images, toute corruption des données peut affecter non seulement l'image actuelle, mais également les images suivantes qui en dépendent pour le décodage. Cela peut entraîner des artefacts visibles ou une perte de qualité vidéo. Pour atténuer ce problème, des techniques de correction et de détection d'erreurs sont souvent utilisées dans les systèmes qui transmettent ou stockent des fichiers M2V.

Le format M2V n'est pas non plus aussi largement pris en charge sur les appareils de lecture modernes que certains autres formats vidéo. Bien qu'il soit encore couramment utilisé dans l'authoring de DVD et Blu-ray, de nombreux nouveaux appareils et lecteurs logiciels se concentrent sur des formats plus récents comme MP4 ou MKV, qui peuvent encapsuler des vidéos MPEG-4 ou H.265 ainsi que plusieurs flux audio, sous-titres et métadonnées dans un seul fichier. Cela peut rendre la lecture de fichiers M2V moins pratique pour les utilisateurs finaux qui peuvent avoir besoin d'utiliser un logiciel spécifique ou de convertir les fichiers dans un format plus compatible.

En termes de taille de fichier, les fichiers M2V peuvent être assez volumineux, surtout lors de l'encodage de vidéos de haute qualité ou haute résolution. En effet, MPEG-2 est moins efficace que les codecs plus récents, et l'absence d'audio intégré signifie que la taille totale d'un projet vidéo inclura des fichiers audio distincts. Pour les projets où la taille du fichier est un problème, comme la distribution en ligne ou le stockage sur des appareils mobiles, des codecs plus modernes peuvent être préférés.

Malgré ces limitations, le format M2V reste un élément important du paysage de la production et de la diffusion vidéo. Sa compatibilité avec les normes DVD et Blu-ray, ainsi que son utilisation dans les workflows de montage vidéo professionnels, garantissent qu'il continuera à être utilisé pour certaines applications. De plus, les connaissances et l'expérience répandues de MPEG-2 parmi les professionnels de la vidéo en font un choix fiable pour les projets où la stabilité et la prévisibilité sont plus importantes que l'efficacité de pointe.

En conclusion, le format M2V est un format de fichier vidéo spécialisé qui encapsule les flux vidéo MPEG-2 sans audio. Son utilisation de techniques de compression avancées, sa prise en charge de la vidéo entrelacée et progressive et sa flexibilité dans les paramètres d'encodage en font un outil polyvalent pour les monteurs et les diffuseurs vidéo. Alors que les nouveaux codecs vidéo ont surpassé MPEG-2 en termes d'efficacité de compression et d'ensemble de fonctionnalités, le rôle de M2V dans les normes établies comme DVD et Blu-ray, ainsi que son utilisation continue dans les environnements

Formats supportés

AAI.aai

Image AAI Dune

AI.ai

Adobe Illustrator CS2

AVIF.avif

Format de fichier d'image AV1

BAYER.bayer

Image Bayer brute

BMP.bmp

Image bitmap Windows

CIN.cin

Fichier image Cineon

CLIP.clip

Masque d'image Clip

CMYK.cmyk

Échantillons cyan, magenta, jaune et noir bruts

CUR.cur

Icône Microsoft

DCX.dcx

ZSoft IBM PC Paintbrush multi-page

DDS.dds

Microsoft DirectDraw Surface

DPX.dpx

Image SMTPE 268M-2003 (DPX 2.0)

DXT1.dxt1

Microsoft DirectDraw Surface

EPDF.epdf

Format de document portable encapsulé

EPI.epi

Format d'échange encapsulé PostScript Adobe

EPS.eps

PostScript encapsulé Adobe

EPSF.epsf

PostScript encapsulé Adobe

EPSI.epsi

Format d'échange encapsulé PostScript Adobe

EPT.ept

PostScript encapsulé avec aperçu TIFF

EPT2.ept2

PostScript niveau II encapsulé avec aperçu TIFF

EXR.exr

Image à gamme dynamique élevée (HDR)

FF.ff

Farbfeld

FITS.fits

Système de transport d'images flexible

GIF.gif

Format d'échange de graphiques CompuServe

HDR.hdr

Image à gamme dynamique élevée

HEIC.heic

Conteneur d'image haute efficacité

HRZ.hrz

Télévision à balayage lent

ICO.ico

Icône Microsoft

ICON.icon

Icône Microsoft

J2C.j2c

Flux JPEG-2000

J2K.j2k

Flux JPEG-2000

JNG.jng

JPEG Network Graphics

JP2.jp2

Syntaxe du format de fichier JPEG-2000

JPE.jpe

Format JFIF du groupe mixte d'experts photographiques

JPEG.jpeg

Format JFIF du groupe mixte d'experts photographiques

JPG.jpg

Format JFIF du groupe mixte d'experts photographiques

JPM.jpm

Syntaxe du format de fichier JPEG-2000

JPS.jps

Format JPS du groupe mixte d'experts photographiques

JPT.jpt

Syntaxe du format de fichier JPEG-2000

JXL.jxl

Image JPEG XL

MAP.map

Base de données d'images multi-résolutions sans couture (MrSID)

MAT.mat

Format d'image MATLAB niveau 5

PAL.pal

Palette Palm

PALM.palm

Palette Palm

PAM.pam

Format de bitmap 2D commun

PBM.pbm

Format de bitmap portable (noir et blanc)

PCD.pcd

Photo CD

PCT.pct

Apple Macintosh QuickDraw/PICT

PCX.pcx

ZSoft IBM PC Paintbrush

PDB.pdb

Format ImageViewer de base de données Palm

PDF.pdf

Format de document portable

PDFA.pdfa

Format d'archive de document portable

PFM.pfm

Format portable à virgule flottante

PGM.pgm

Format de bitmap portable (niveaux de gris)

PGX.pgx

Format JPEG 2000 non compressé

PICT.pict

Apple Macintosh QuickDraw/PICT

PJPEG.pjpeg

Format JFIF du groupe mixte d'experts photographiques

PNG.png

Portable Network Graphics

PNG00.png00

PNG héritant de la profondeur de bits, du type de couleur de l'image d'origine

PNG24.png24

24 bits RVB opaque ou transparent binaire (zlib 1.2.11)

PNG32.png32

32 bits RVB opaque ou transparent binaire

PNG48.png48

48 bits RVB opaque ou transparent binaire

PNG64.png64

64 bits RVB opaque ou transparent binaire

PNG8.png8

8 bits indexé opaque ou transparent binaire

PNM.pnm

Portable anymap

PPM.ppm

Format de pixmap portable (couleur)

PS.ps

Fichier PostScript Adobe

PSB.psb

Format de grand document Adobe

PSD.psd

Bitmap Photoshop Adobe

RGB.rgb

Échantillons rouge, vert et bleu bruts

RGBA.rgba

Échantillons rouge, vert, bleu et alpha bruts

RGBO.rgbo

Échantillons rouge, vert, bleu et opacité bruts

SIX.six

Format de graphiques SIXEL DEC

SUN.sun

Fichier Rasterfile Sun

SVG.svg

Graphiques vectoriels adaptables

TIFF.tiff

Format de fichier d'image balisée

VDA.vda

Image Truevision Targa

VIPS.vips

Image VIPS

WBMP.wbmp

Image sans fil Bitmap (niveau 0)

WEBP.webp

Format d'image WebP

YUV.yuv

CCIR 601 4:1:1 ou 4:2:2

Foire aux questions

Comment ça marche ?

Ce convertisseur fonctionne entièrement dans votre navigateur. Lorsque vous sélectionnez un fichier, il est lu en mémoire et converti dans le format sélectionné. Vous pouvez ensuite télécharger le fichier converti.

Combien de temps prend la conversion d'un fichier ?

Les conversions commencent instantanément, et la plupart des fichiers sont convertis en moins d'une seconde. Les fichiers plus volumineux peuvent prendre plus de temps.

Que deviennent mes fichiers ?

Vos fichiers ne sont jamais téléversés vers nos serveurs. Ils sont convertis dans votre navigateur, puis le fichier converti est téléchargé. Nous ne voyons jamais vos fichiers.

Quels types de fichiers puis-je convertir ?

Nous prenons en charge la conversion entre tous les formats d'image, y compris JPEG, PNG, GIF, WebP, SVG, BMP, TIFF, et plus encore.

Combien cela coûte ?

Ce convertisseur est complètement gratuit, et le restera toujours. Parce qu'il fonctionne dans votre navigateur, nous n'avons pas besoin de payer pour des serveurs, donc nous n'avons pas besoin de vous faire payer.

Puis-je convertir plusieurs fichiers à la fois ?

Oui ! Vous pouvez convertir autant de fichiers que vous voulez simultanément. Il suffit de sélectionner plusieurs fichiers lorsque vous les ajoutez.