OCR de n'importe quel PSB

Déposez une photo, un scan ou un PDF (jusqu'à 2.5 Go). Nous extrayons le texte directement dans votre navigateur — gratuit, illimité et vos fichiers ne quittent jamais votre appareil.

Privé et sécurisé

Tout se passe dans votre navigateur. Vos fichiers ne touchent jamais nos serveurs.

Ultra rapide

Pas de téléchargement, pas d'attente. Convertissez au moment où vous déposez un fichier.

Vraiment gratuit

Aucun compte requis. Pas de coûts cachés. Pas d'astuces sur la taille des fichiers.

La reconnaissance optique de caractères (OCR) transforme les images de texte (scans, photos de smartphone, PDF) en chaînes de caractères lisibles par machine et, de plus en plus, en données structurées. L'OCR moderne est un pipeline qui nettoie une image, trouve du texte, le lit et exporte des métadonnées riches afin que les systèmes en aval puissent rechercher, indexer ou extraire des champs. Deux normes de sortie largement utilisées sont hOCR, un microformat HTML pour le texte et la mise en page, et ALTO XML, un schéma orienté bibliothèque/archives ; tous deux préservent les positions, l'ordre de lecture et d'autres indices de mise en page et sont pris en charge par des moteurs populaires comme Tesseract.

Un tour rapide du pipeline

Prétraitement. La qualité de l'OCR commence par le nettoyage de l'image : conversion en niveaux de gris, débruitage, seuillage (binarisation) et redressement. Les tutoriels canoniques d'OpenCV couvrent le seuillage global, adaptatif et d'Otsu — des incontournables pour les documents avec un éclairage non uniforme ou des histogrammes bimodaux. Lorsque l'éclairage varie au sein d'une page (pensez aux photos de téléphone), les méthodes adaptatives surpassent souvent un seuil global unique ; Otsu choisit automatiquement un seuil en analysant l'histogramme. La correction de l'inclinaison est tout aussi importante : le redressement basé sur Hough (Transformée de Hough) associé à la binarisation d'Otsu est une recette courante et efficace dans les pipelines de prétraitement de production.

Détection vs. reconnaissance. L'OCR est généralement divisé en détection de texte (où se trouve le texte ?) et reconnaissance de texte (que dit-il ?). Dans les scènes naturelles et de nombreux scans, les détecteurs entièrement convolutifs comme EAST prédisent efficacement des quadrilatères au niveau du mot ou de la ligne sans étapes de proposition lourdes et sont implémentés dans des boîtes à outils courantes (par exemple, le tutoriel de détection de texte d'OpenCV). Sur les pages complexes (journaux, formulaires, livres), la segmentation des lignes/régions et l'inférence de l'ordre de lecture sont importantes :Kraken implémente la segmentation traditionnelle de zones/lignes et la segmentation neuronale de ligne de base, avec un support explicite pour différents scripts et directions (LTR/RTL/vertical).

Modèles de reconnaissance. Le classique cheval de bataille open-source Tesseract (open-sourcé par Google, avec des racines chez HP) a évolué d'un classifieur de caractères en un reconnaisseur de séquence basé sur LSTM et peut émettre des PDF consultables, des sorties compatibles hOCR/ALTO, et plus encore depuis la CLI. Les reconnaisseurs modernes s'appuient sur la modélisation de séquence sans caractères pré-segmentés. La classification temporelle connexionniste (CTC) reste fondamentale, apprenant les alignements entre les séquences de caractéristiques d'entrée et les chaînes d'étiquettes de sortie ; elle est largement utilisée dans les pipelines d'écriture manuscrite et de texte de scène.

Ces dernières années, les Transformers ont remodelé l'OCR. TrOCR utilise un encodeur Vision Transformer plus un décodeur Text Transformer, entraîné sur de grands corpus synthétiques puis affiné sur des données réelles, avec de solides performances sur les benchmarks de texte imprimé, manuscrit et de scène (voir aussi la documentation de Hugging Face). En parallèle, certains systèmes contournent l'OCR pour la compréhension en aval : Donut (Document Understanding Transformer) est un encodeur-décodeur sans OCR qui produit directement des réponses structurées (comme du JSON clé-valeur) à partir d'images de documents (repo, carte de modèle), évitant l'accumulation d'erreurs lorsqu'une étape OCR distincte alimente un système d'IE.

Moteurs et bibliothèques

Si vous voulez une lecture de texte clés en main sur de nombreux scripts, EasyOCR offre une API simple avec plus de 80 modèles linguistiques, renvoyant des boîtes, du texte et des confiances — pratique pour les prototypes et les scripts non latins. Pour les documents historiques, Kraken brille par sa segmentation de ligne de base et son ordre de lecture sensible au script ; pour un entraînement flexible au niveau de la ligne, Calamari s'appuie sur la lignée d'Ocropy (Ocropy) avec des reconnaisseurs (multi-)LSTM+CTC et une CLI pour affiner des modèles personnalisés.

Ensembles de données et benchmarks

La généralisation dépend des données. Pour l'écriture manuscrite, la base de données d'écriture manuscrite IAM fournit des phrases en anglais de divers scripteurs pour l'entraînement et l'évaluation ; c'est un ensemble de référence de longue date pour la reconnaissance de lignes et de mots. Pour le texte de scène, COCO-Text a superposé des annotations étendues sur MS-COCO, avec des étiquettes pour l'imprimé/manuscrit, lisible/illisible, le script et les transcriptions complètes (voir aussi la page originale du projet). Le domaine s'appuie également fortement sur le pré-entraînement synthétique : SynthText in the Wild rend le texte dans des photographies avec une géométrie et un éclairage réalistes, fournissant d'énormes volumes de données pour pré-entraîner les détecteurs et les reconnaisseurs (référence code et données).

Les compétitions sous l'égide de la lecture robuste d'ICDAR maintiennent l'évaluation sur le terrain. Les tâches récentes mettent l'accent sur la détection/lecture de bout en bout et incluent la liaison de mots en phrases, avec le code officiel rapportant précision/rappel/F-score, l'intersection sur l'union (IoU) et les métriques de distance d'édition au niveau du caractère — reflétant ce que les praticiens devraient suivre.

Formats de sortie et utilisation en aval

L'OCR se termine rarement par du texte brut. Les archives et les bibliothèques numériques préfèrent ALTO XML car il encode la mise en page physique (blocs/lignes/mots avec coordonnées) ainsi que le contenu, et il se marie bien avec l'empaquetage METS. Le microformat hOCR , en revanche, intègre la même idée dans HTML/CSS en utilisant des classes comme ocr_line et ocrx_word, ce qui facilite l'affichage, la modification et la transformation avec des outils web. Tesseract expose les deux — par exemple, en générant du hOCR ou des PDF consultables directement depuis la CLI (guide de sortie PDF) ; les wrappers Python comme pytesseract ajoutent de la commodité. Il existe des convertisseurs pour traduire entre hOCR et ALTO lorsque les dépôts ont des normes d'ingestion fixes — voir cette liste organisée d' outils de format de fichier OCR.

Conseils pratiques

  • Commencez par les données et la propreté. Si vos images sont des photos de téléphone ou des scans de qualité mixte, investissez dans le seuillage (adaptatif et Otsu) et le redressement (Hough) avant tout réglage de modèle. Vous gagnerez souvent plus d'une recette de prétraitement robuste que de changer de reconnaisseurs.
  • Choisissez le bon détecteur. Pour les pages numérisées avec des colonnes régulières, un segmenteur de page (zones → lignes) peut suffire ; pour les images naturelles, les détecteurs à un seul coup comme EAST sont de solides bases de référence et se branchent sur de nombreuses boîtes à outils (exemple OpenCV).
  • Choisissez un reconnaisseur qui correspond à votre texte. Pour le latin imprimé, Tesseract (LSTM/OEM) est robuste et rapide ; pour les multi-scripts ou les prototypes rapides, EasyOCR est productif ; pour l'écriture manuscrite ou les polices de caractères historiques, envisagez Kraken ou Calamari et prévoyez un réglage fin. Si vous avez besoin d'un couplage étroit avec la compréhension de documents (extraction clé-valeur, VQA), évaluez TrOCR (OCR) par rapport à Donut (sans OCR) sur votre schéma — Donut peut supprimer une étape d'intégration entière.
  • Mesurez ce qui compte. Pour les systèmes de bout en bout, rapportez la détection F-score et la reconnaissance CER/WER (tous deux basés sur la distance d'édition de Levenshtein ; voir CTC) ; pour les tâches lourdes en mise en page, suivez l'IoU/l'étroitesse et la distance d'édition normalisée au niveau du caractère comme dans les kits d'évaluation ICDAR RRC .
  • Exportez des sorties riches. Préférez hOCR /ALTO (ou les deux) afin de conserver les coordonnées et l'ordre de lecture — vital pour la mise en surbrillance des résultats de recherche, l'extraction de tableaux/champs et la provenance. La CLI de Tesseract et pytesseract en font une seule ligne.

Regarder vers l'avenir

La tendance la plus forte est la convergence : la détection, la reconnaissance, la modélisation du langage et même le décodage spécifique à la tâche fusionnent dans des piles de Transformers unifiées. Le pré-entraînement sur de grands corpus synthétiques reste un multiplicateur de force. Les modèles sans OCR seront en concurrence agressive partout où la cible est des sorties structurées plutôt que des transcriptions littérales. Attendez-vous également à des déploiements hybrides : un détecteur léger plus un reconnaisseur de style TrOCR pour le texte long, et un modèle de style Donut pour les formulaires et les reçus.

Lectures complémentaires et outils

Tesseract (GitHub) · Documentation de Tesseract · Spécification hOCR · Contexte ALTO · Détecteur EAST · Détection de texte OpenCV · TrOCR · Donut · COCO-Text · SynthText · Kraken · Calamari OCR · ICDAR RRC · pytesseract · Écriture manuscrite IAM · Outils de format de fichier OCR · EasyOCR

Questions Fréquemment Posées

Qu'est-ce que l'OCR ?

La reconnaissance optique de caractères (OCR) est une technologie utilisée pour convertir différents types de documents, tels que des documents papier numérisés, des fichiers PDF ou des images capturées par un appareil photo numérique, en données modifiables et recherchables.

Comment fonctionne l'OCR ?

L'OCR fonctionne en numérisant une image ou un document d'entrée, en segmentant l'image en caractères individuels, et en comparant chaque caractère avec une base de données de formes de caractères en utilisant la reconnaissance de formes ou la reconnaissance de caractéristiques.

Quelles sont les applications pratiques de l'OCR ?

L'OCR est utilisé dans une variété de secteurs et d'applications, y compris la numérisation de documents imprimés, l'activation des services de texte en parole, l'automatisation des processus de saisie de données, et l'aide aux utilisateurs malvoyants pour mieux interagir avec le texte.

L'OCR est-il toujours précis à 100% ?

Bien que des progrès importants aient été faits dans la technologie OCR, elle n'est pas infaillible. La précision peut varier en fonction de la qualité du document original et des spécificités du logiciel OCR utilisé.

L'OCR peut-il reconnaître l'écriture manuelle ?

Bien que l'OCR soit principalement conçu pour le texte imprimé, certains systèmes OCR avancés sont également capables de reconnaître une écriture manuelle claire et cohérente. Cependant, la reconnaissance de l'écriture manuelle est généralement moins précise en raison de la grande variation des styles d'écriture individuels.

L'OCR peut-il gérer plusieurs langues ?

Oui, de nombreux systèmes logiciels OCR peuvent reconnaître plusieurs langues. Cependant, il est important de s'assurer que la langue spécifique est prise en charge par le logiciel que vous utilisez.

Quelle est la différence entre l'OCR et l'ICR ?

OCR signifie Optical Character Recognition et est utilisé pour reconnaître le texte imprimé, tandis que ICR, ou Intelligent Character Recognition, est plus avancé et est utilisé pour reconnaître le texte écrit à la main.

L'OCR fonctionne-t-il avec toutes les polices et tailles de texte ?

L'OCR fonctionne mieux avec des polices claires et faciles à lire et des tailles de texte standard. Bien qu'il puisse fonctionner avec différentes polices et tailles, la précision a tendance à diminuer lorsqu'on traite des polices inhabituelles ou des tailles de texte très petites.

Quelles sont les limites de la technologie OCR ?

L'OCR peut avoir du mal avec les documents de faible résolution, les polices complexes, les textes mal imprimés, l'écriture manuelle, et les documents avec des arrière-plans qui interfèrent avec le texte. De plus, bien qu'il puisse fonctionner avec de nombreuses langues, il ne couvre peut-être pas parfaitement toutes les langues.

L'OCR peut-il numériser du texte en couleur ou des arrière-plans en couleur ?

Oui, l'OCR peut numériser du texte en couleur et des arrière-plans en couleur, bien qu'il soit généralement plus efficace avec des combinaisons de couleurs à contraste élevé, comme le texte noir sur un fond blanc. La précision peut diminuer lorsque les couleurs du texte et de l'arrière-plan manquent de contraste suffisant.

Qu'est-ce que le format PSB ?

Format de grand document Adobe

La PlayStation 3 (PS3) reste un exemple fascinant de technologie de console de jeu, non seulement en raison de ses capacités de jeu, mais aussi en raison de son approche unique de la gestion des médias et des images. Le format d'image de la PS3 fait partie intégrante de sa riche expérience multimédia, alliant jeu et contenu multimédia haute définition. Comprendre les subtilités techniques du format d'image PS3 nécessite de se plonger dans l'architecture de traitement graphique de la console, les types de formats d'image qu'elle prend en charge, les méthodes utilisées pour la compression et l'optimisation, ainsi que les implications sur le développement de jeux et la création de contenu.

Au cœur de la capacité de la PS3 à gérer des images complexes se trouve le Reality Synthesizer (RSX), une puissante unité de traitement graphique (GPU) développée en collaboration par NVIDIA et Sony. Le RSX est capable de restituer des graphismes à des résolutions allant jusqu'à 1080p, mettant en valeur les prouesses de la PS3 dans la fourniture d'expériences de jeu et multimédia haute définition. Ce GPU prend en charge une large gamme de formats d'image, notamment, mais sans s'y limiter, JPEG, GIF, BMP, TIFF et PNG pour les images 2D, ainsi que des formats spécialisés pour les textures et les graphiques 3D.

L'une des caractéristiques notables de la PS3 est sa prise en charge de l'imagerie à plage dynamique relativement élevée (HDR), qui améliore la qualité visuelle des jeux et des vidéos en permettant une gamme plus large de niveaux de couleur et de luminosité. Le HDR sur PS3 est obtenu grâce à des formats d'image spécifiques et à des techniques de traitement qui manipulent le contraste et la gamme de couleurs, offrant une expérience visuelle plus réaliste et immersive. Cette capacité HDR se reflète dans la prise en charge par la console de divers formats d'image et de texture qui stockent des données à plage dynamique élevée.

La PS3 utilise plusieurs types de techniques de compression pour gérer efficacement ses fichiers image, compte tenu des limitations de stockage de la console et de la taille du contenu HD. L'un des formats couramment utilisés est le format Digital Picture Exchange (DPX), qui est souvent utilisé dans la post-production vidéo en raison de ses capacités de compression sans perte. Pour les textures, la PS3 utilise les formats DirectX Texture Compression (DXTC), également connus sous le nom de S3 Texture Compression (S3TC), qui sont essentiels pour réduire la taille des fichiers sans compromettre de manière significative la qualité de l'image.

Pour optimiser davantage la gestion des images, la PS3 utilise largement les techniques de mipmapping et de filtrage anisotrope. Le mipmapping consiste à créer des versions de résolution inférieure d'une image ou d'une texture à utiliser lorsqu'un objet est éloigné ou non en vue directe, améliorant considérablement les performances avec un impact minimal sur la qualité visuelle. Le filtrage anisotrope améliore la qualité d'image des textures sur les surfaces qui sont vues sous des angles obliques, garantissant que ces textures apparaissent lisses et détaillées même à distance.

Un autre aspect du paysage du format d'image PS3 concerne les technologies propriétaires développées spécifiquement pour la console. Par exemple, le Multi-Format Codec (MFC) joue un rôle crucial dans la compression et la décompression d'images et de vidéos en temps réel, facilitant le streaming et la lecture de contenu haute définition. Ce système de codec est conçu pour fonctionner de manière transparente avec le Cell Broadband Engine de la PS3, permettant un traitement parallèle efficace du contenu multimédia.

La PS3 a également introduit l'utilisation du format Blu-ray Disc pour la distribution physique de jeux et de médias, ce qui a eu un impact significatif sur la qualité d'image et la capacité de stockage. Les disques Blu-ray offrent un stockage nettement supérieur à celui des DVD, permettant aux développeurs de jeux d'incorporer des textures de résolution plus élevée, des environnements plus détaillés et des fichiers audio et vidéo non compressés. Ce bond de capacité de stockage signifiait que la PS3 pouvait gérer des formats d'image plus complexes et des fichiers de plus grande taille, améliorant ainsi la fidélité globale et la richesse de l'expérience de jeu.

En termes de prise en charge logicielle, le logiciel système de la PS3 comprend un lecteur multimédia complet qui prend en charge divers formats d'image, audio et vidéo. Cette polyvalence garantit que la PS3 peut fonctionner comme un centre multimédia à part entière, et pas seulement comme une console de jeu. De plus, les outils de développement fournis par Sony pour la PS3 incluent des bibliothèques et des API spécialement conçues pour gérer les formats d'image et les capacités de traitement uniques de la console, permettant aux développeurs d'exploiter pleinement le potentiel multimédia du matériel.

L'inclusion d'options de connectivité réseau sur la PS3, telles qu'Ethernet et Wi-Fi, a ouvert de nouvelles possibilités pour le téléchargement et le streaming de contenu, notamment des images et des vidéos. Cette connectivité, combinée aux puissantes capacités de traitement de la PS3, permet le téléchargement, le traitement et l'affichage en temps réel d'images et de vidéos haute définition à partir d'Internet, une fonctionnalité qui était révolutionnaire au moment de la sortie de la console.

De plus, la prise en charge par la PS3 des périphériques de stockage externes via des ports USB permettait aux utilisateurs de visualiser et de stocker un large éventail de formats d'image directement à partir de disques durs externes, de clés USB et d'autres supports de stockage. Cette fonctionnalité a amélioré la capacité de la PS3 en tant que hub multimédia, lui permettant d'afficher des photos haute résolution et de lire du contenu vidéo à partir de diverses sources au-delà du disque dur interne de la console ou des disques Blu-ray.

Pour les développeurs de jeux, comprendre et utiliser les formats d'image et les techniques de compression de la PS3 était crucial pour optimiser les performances et la qualité visuelle. Le développement de jeux pour la PS3 nécessitait un équilibre minutieux entre les détails de l'image et la taille du fichier, garantissant que les jeux pouvaient se charger rapidement sans sacrifier la richesse et la profondeur de l'expérience visuelle. Cela impliquait souvent des utilisations innovantes de la compression, des formats propriétaires et des capacités matérielles uniques de la console pour obtenir les résultats souhaités.

L'approche de la PS3 en matière de traitement d'image et de prise en charge des formats a également eu des implications pour la création de contenu en dehors des jeux. Les cinéastes, les animateurs et les artistes multimédias ont trouvé que la console était un outil puissant pour le rendu et le traitement d'images et de vidéos haute définition. Les capacités matérielles de la PS3, combinées à sa prise en charge d'une large gamme de formats d'image et de techniques de compression, en ont fait une plate-forme polyvalente pour une variété d'applications créatives et professionnelles.

Malgré les avancées technologiques et la large gamme de capacités offertes par la PS3 en termes de traitement d'image, son architecture unique présentait des défis. La complexité du Cell Broadband Engine, combinée à la nature propriétaire de certains formats et outils de la console, a constitué une courbe d'apprentissage abrupte pour les développeurs et les créateurs de contenu. Cette complexité nécessitait un investissement important en temps et en ressources pour exploiter pleinement les capacités de la console, ce qui pouvait constituer un obstacle pour les petites équipes de développement ou les créateurs indépendants.

Alors que l'industrie du jeu continue d'évoluer, l'héritage du format d'image et des capacités de traitement de la PS3 reste influent. Les leçons tirées de la gestion des complexités et du potentiel du matériel de la PS3 ont éclairé le développement des consoles et des plateformes de jeu ultérieures. L'accent mis sur l'imagerie haute définition, la compression efficace et la prise en charge multimédia polyvalente qui caractérisaient la PS3 est devenu une attente standard pour les appareils de jeu et de divertissement modernes.

En conclusion, le format d'image et l'architecture de traitement de la PS3 représentent une étape importante dans l'évolution des consoles de jeu en tant que plateformes multimédias. Les capacités de la console à gérer une large gamme de formats d'image, combinées à sa puissante unité de traitement graphique, à ses techniques de compression avancées et à sa prise en charge du contenu haute définition, ont établi une nouvelle norme pour la qualité visuelle et l'intégration multimédia dans l'industrie du jeu. Alors que nous revenons sur l'ère PS3, son impact sur le développement de jeux, la création de contenu et le domaine plus large des médias numériques continue de se faire sentir, soulignant l'importance de comprendre et d'exploiter la technologie derrière les formats d'image dans le monde du jeu.

Formats supportés

AAI.aai

Image AAI Dune

AI.ai

Adobe Illustrator CS2

AVIF.avif

Format de fichier d'image AV1

BAYER.bayer

Image Bayer brute

BMP.bmp

Image bitmap Windows

CIN.cin

Fichier image Cineon

CLIP.clip

Masque d'image Clip

CMYK.cmyk

Échantillons cyan, magenta, jaune et noir bruts

CUR.cur

Icône Microsoft

DCX.dcx

ZSoft IBM PC Paintbrush multi-page

DDS.dds

Microsoft DirectDraw Surface

DPX.dpx

Image SMTPE 268M-2003 (DPX 2.0)

DXT1.dxt1

Microsoft DirectDraw Surface

EPDF.epdf

Format de document portable encapsulé

EPI.epi

Format d'échange encapsulé PostScript Adobe

EPS.eps

PostScript encapsulé Adobe

EPSF.epsf

PostScript encapsulé Adobe

EPSI.epsi

Format d'échange encapsulé PostScript Adobe

EPT.ept

PostScript encapsulé avec aperçu TIFF

EPT2.ept2

PostScript niveau II encapsulé avec aperçu TIFF

EXR.exr

Image à gamme dynamique élevée (HDR)

FF.ff

Farbfeld

FITS.fits

Système de transport d'images flexible

GIF.gif

Format d'échange de graphiques CompuServe

HDR.hdr

Image à gamme dynamique élevée

HEIC.heic

Conteneur d'image haute efficacité

HRZ.hrz

Télévision à balayage lent

ICO.ico

Icône Microsoft

ICON.icon

Icône Microsoft

J2C.j2c

Flux JPEG-2000

J2K.j2k

Flux JPEG-2000

JNG.jng

JPEG Network Graphics

JP2.jp2

Syntaxe du format de fichier JPEG-2000

JPE.jpe

Format JFIF du groupe mixte d'experts photographiques

JPEG.jpeg

Format JFIF du groupe mixte d'experts photographiques

JPG.jpg

Format JFIF du groupe mixte d'experts photographiques

JPM.jpm

Syntaxe du format de fichier JPEG-2000

JPS.jps

Format JPS du groupe mixte d'experts photographiques

JPT.jpt

Syntaxe du format de fichier JPEG-2000

JXL.jxl

Image JPEG XL

MAP.map

Base de données d'images multi-résolutions sans couture (MrSID)

MAT.mat

Format d'image MATLAB niveau 5

PAL.pal

Palette Palm

PALM.palm

Palette Palm

PAM.pam

Format de bitmap 2D commun

PBM.pbm

Format de bitmap portable (noir et blanc)

PCD.pcd

Photo CD

PCT.pct

Apple Macintosh QuickDraw/PICT

PCX.pcx

ZSoft IBM PC Paintbrush

PDB.pdb

Format ImageViewer de base de données Palm

PDF.pdf

Format de document portable

PDFA.pdfa

Format d'archive de document portable

PFM.pfm

Format portable à virgule flottante

PGM.pgm

Format de bitmap portable (niveaux de gris)

PGX.pgx

Format JPEG 2000 non compressé

PICT.pict

Apple Macintosh QuickDraw/PICT

PJPEG.pjpeg

Format JFIF du groupe mixte d'experts photographiques

PNG.png

Portable Network Graphics

PNG00.png00

PNG héritant de la profondeur de bits, du type de couleur de l'image d'origine

PNG24.png24

24 bits RVB opaque ou transparent binaire (zlib 1.2.11)

PNG32.png32

32 bits RVB opaque ou transparent binaire

PNG48.png48

48 bits RVB opaque ou transparent binaire

PNG64.png64

64 bits RVB opaque ou transparent binaire

PNG8.png8

8 bits indexé opaque ou transparent binaire

PNM.pnm

Portable anymap

PPM.ppm

Format de pixmap portable (couleur)

PS.ps

Fichier PostScript Adobe

PSB.psb

Format de grand document Adobe

PSD.psd

Bitmap Photoshop Adobe

RGB.rgb

Échantillons rouge, vert et bleu bruts

RGBA.rgba

Échantillons rouge, vert, bleu et alpha bruts

RGBO.rgbo

Échantillons rouge, vert, bleu et opacité bruts

SIX.six

Format de graphiques SIXEL DEC

SUN.sun

Fichier Rasterfile Sun

SVG.svg

Graphiques vectoriels adaptables

TIFF.tiff

Format de fichier d'image balisée

VDA.vda

Image Truevision Targa

VIPS.vips

Image VIPS

WBMP.wbmp

Image sans fil Bitmap (niveau 0)

WEBP.webp

Format d'image WebP

YUV.yuv

CCIR 601 4:1:1 ou 4:2:2

Foire aux questions

Comment ça marche ?

Ce convertisseur fonctionne entièrement dans votre navigateur. Lorsque vous sélectionnez un fichier, il est lu en mémoire et converti dans le format sélectionné. Vous pouvez ensuite télécharger le fichier converti.

Combien de temps prend la conversion d'un fichier ?

Les conversions commencent instantanément, et la plupart des fichiers sont convertis en moins d'une seconde. Les fichiers plus volumineux peuvent prendre plus de temps.

Que deviennent mes fichiers ?

Vos fichiers ne sont jamais téléversés vers nos serveurs. Ils sont convertis dans votre navigateur, puis le fichier converti est téléchargé. Nous ne voyons jamais vos fichiers.

Quels types de fichiers puis-je convertir ?

Nous prenons en charge la conversion entre tous les formats d'image, y compris JPEG, PNG, GIF, WebP, SVG, BMP, TIFF, et plus encore.

Combien cela coûte ?

Ce convertisseur est complètement gratuit, et le restera toujours. Parce qu'il fonctionne dans votre navigateur, nous n'avons pas besoin de payer pour des serveurs, donc nous n'avons pas besoin de vous faire payer.

Puis-je convertir plusieurs fichiers à la fois ?

Oui ! Vous pouvez convertir autant de fichiers que vous voulez simultanément. Il suffit de sélectionner plusieurs fichiers lorsque vous les ajoutez.