EXIF(교환 이미지 파일 형식)는 카메라와 휴대폰이 이미지 파일(노출, 렌즈, 타임스탬프, GPS까지)에 내장하는 캡처 메타데이터 블록으로, JPEG 및 TIFF와 같은 형식 내에 패키지된 TIFF 스타일 태그 시스템을 사용합니다. 사진 라이브러리 및 워크플로 전반에 걸쳐 검색 기능, 정렬 및 자동화에 필수적이지만 부주의하게 공유될 경우 의도하지 않은 유출 경로가 될 수도 있습니다(ExifTool 및 Exiv2를 사용하면 쉽게 검사할 수 있음).
낮은 수준에서 EXIF는 TIFF의 이미지 파일 디렉토리(IFD) 구조를 재사용하고 JPEG에서는 APP1 마커(0xFFE1) 내에 존재하여 작은 TIFF를 JPEG 컨테이너 내에 효과적으로 중첩시킵니다(JFIF 개요, CIPA 사양 포털). 공식 사양인 CIPA DC-008(EXIF)(현재 3.x)은 IFD 레이아웃, 태그 유형 및 제약 조건을 문서화합니다(CIPA DC-008, 사양 요약). EXIF는 전용 GPS 하위 IFD(태그 0x8825)와 상호 운용성 IFD(0xA005)를 정의합니다(Exif 태그 테이블).
패키징 세부 정보가 중요합니다. 일반적인 JPEG는 JFIF APP0 세그먼트로 시작하고 그 뒤에 APP1의 EXIF가 옵니다. 이전 리더는 JFIF를 먼저 예상하는 반면 최신 라이브러리는 둘 다를 즐겁게 구문 분석합니다(APP 세그먼트 참고). 실제 파서는 사양이 요구하지 않는 APP 순서나 크기 제한을 가정하는 경우가 있으며, 이것이 도구 작성자가 기이함과 특이 사례를 문서화하는 이유입니다(Exiv2 메타데이터 가이드, ExifTool 문서).
EXIF는 JPEG/TIFF에만 국한되지 않습니다. PNG 생태계는 PNG에서 EXIF를 전달하기 위해 eXIf 청크를 표준화했습니다(지원이 증가하고 있으며 IDAT에 대한 청크 순서는 일부 구현에서 중요할 수 있음). RIFF 기반 형식인 WebP는 전용 청크에 EXIF, XMP 및 ICC를 수용합니다(WebP RIFF 컨테이너, libwebp). Apple 플랫폼에서 Image I/O는 XMP 및 제조업체 데이터와 함께 HEIC/HEIF로 변환할 때 EXIF를 보존합니다(kCGImagePropertyExifDictionary).
앱이 카메라 설정을 어떻게 유추하는지 궁금한 적이 있다면 EXIF의 태그 맵이 답입니다. Make, Model,FNumber, ExposureTime, ISOSpeedRatings, FocalLength, MeteringMode, 등은 기본 및 EXIF 하위 IFD에 있습니다(Exif 태그, Exiv2 태그). Apple은 ExifFNumber 및 GPSDictionary와 같은 Image I/O 상수를 통해 이를 노출합니다. Android에서는 AndroidX ExifInterface 가 JPEG, PNG, WebP 및 HEIF에서 EXIF를 읽고 씁니다.
방향은 특별히 언급할 가치가 있습니다. 대부분의 장치는 픽셀을 "촬영된 대로" 저장하고 뷰어에게 디스플레이에서 회전하는 방법을 알려주는 태그를 기록합니다. 이것이 1(보통), 6(시계 방향 90°), 3(180°), 8(시계 방향 270°)과 같은 값을 가진 태그 274(Orientation)입니다. 이 태그를 존중 하거나 업데이트하지 않으면 사진이 옆으로 눕고 축소판이 일치하지 않으며 다운스트림 ML 오류가 발생합니다 (방향 태그;실용 가이드). 파이프라인은 종종 픽셀을 물리적으로 회전하고 Orientation=1로 설정하여 정규화합니다 (ExifTool).
시간 기록은 보기보다 까다롭습니다. DateTimeOriginal과 같은 과거 태그에는 시간대가 없어 국경을 넘는 촬영이 모호해집니다. 최신 태그는 시간대 동반자를 추가합니다(예: OffsetTimeOriginal). 따라서 소프트웨어는 건전한 순서 지정 및 지리 상관 관계를 위해 DateTimeOriginal에 UTC 오프셋(예: -07:00)을 더하여 기록할 수 있습니다 (OffsetTime* 태그;태그 개요).
EXIF는 IPTC 사진 메타데이터(제목, 제작자, 권리, 주제) 및 Adobe의 RDF 기반 프레임워크인 XMP(ISO 16684-1로 표준화됨)와 공존하며 때로는 겹칩니다. 실제로 잘 작동하는 소프트웨어는 카메라에서 작성한 EXIF와 사용자가 작성한 IPTC/XMP를 둘 다 버리지 않고 조정합니다 (IPTC 지침;XMP에 대한 LoC;EXIF에 대한 LoC).
개인 정보는 EXIF가 논란이 되는 부분입니다. 지오태그와 장치 일련 번호는 민감한 위치를 한 번 이상 노출했습니다. 대표적인 예는 2012년 Vice의 John McAfee 사진으로, EXIF GPS 좌표가 그의 행방을 드러냈다고 합니다 (Wired;The Guardian). 많은 소셜 플랫폼은 업로드 시 대부분의 EXIF를 제거하지만 동작은 다양하며 시간이 지남에 따라 변경됩니다. 자신의 게시물을 다운로드하고 도구로 검사하여 확인하십시오 (Twitter 미디어 도움말;Facebook 도움말;Instagram 도움말).
보안 연구원들도 EXIF 파서를 면밀히 주시합니다. 널리 사용되는 라이브러리(예: libexif)의 취약점에는 잘못된 형식의 태그로 인해 트리거되는 버퍼 오버플로 및 OOB 읽기가 포함되었습니다. EXIF는 예측 가능한 위치에 구조화된 이진 파일이므로 쉽게 만들 수 있습니다 (권고;NVD 검색). 신뢰할 수 없는 파일을 수집하는 경우 메타데이터 라이브러리를 패치하고 이미지 처리를 샌드박스 처리하십시오.
신중하게 사용하면 EXIF는 사진 카탈로그, 권리 워크플로 및 컴퓨터 비전 파이프라인을 구동하는 결합 조직입니다. 순진하게 사용하면 공유하고 싶지 않은 빵 부스러기 흔적입니다. 좋은 소식은 생태계(사양, OS API 및 도구)가 필요한 제어 기능을 제공한다는 것입니다 (CIPA EXIF;ExifTool;Exiv2;IPTC;XMP).
EXIF, 또는 교환 가능한 이미지 파일 포맷, 데이터는 카메라 설정, 사진이 찍힌 날짜와 시간, 그리고 GPS가 활성화된 경우 위치 정보 등 사진에 대한 다양한 메타데이터를 포함합니다.
대부분의 이미지 뷰어 및 편집기(예: Adobe Photoshop, Windows 사진 뷰어 등)에서 EXIF 데이터를 볼 수 있습니다. 당신은 단지 속성이나 정보 패널을 열면 됩니다.
네, Adobe Photoshop, Lightroom 등의 특정 소프트웨어 프로그램이나 손쉽게 사용할 수 있는 온라인 리소스를 통해 EXIF 데이터를 편집할 수 있습니다. 이러한 도구들을 이용하여 특정 EXIF 메타데이터 필드를 조정하거나 삭제할 수 있습니다.
네. GPS가 활성화된 상태라면, EXIF 메타데이터에 포함된 위치 데이터는 사진이 찍힌 곳에 대한 민감한 지리적 정보를 공개할 수 있습니다. 따라서 사진을 공유할 때 이 데이터를 제거하거나 난독화하는 것이 좋습니다.
여러 소프트웨어 프로그램들은 EXIF 데이터를 제거할 수 있는 기능을 제공합니다. 이 과정은 EXIF 데이터 '제거'라고도 알려져 있습니다. 이러한 기능을 제공하는 여러 온라인 도구들도 있습니다.
Facebook, Instagram, Twitter 등 대부분의 소셜 미디어 플랫폼은 사용자의 프라이버시를 유지하기 위해 이미지에서 EXIF 데이터를 자동으로 제거합니다.
EXIF 데이터는 카메라 모델, 촬영 날짜 및 시간, 초점 거리, 노출 시간, 조리개, ISO 설정, 화이트 밸런스 설정, GPS 위치 등 다양한 정보를 포함할 수 있습니다.
사진작가들에게 EXIF 데이터는 특정 사진에 사용된 정확한 설정을 이해하는데 도움이 될 수 있습니다. 이 정보는 기법을 향상시키거나, 향후 사진 촬영에서 비슷한 조건을 복제하는데 도움이 될 수 있습니다.
아니요, 디지털 카메라와 스마트폰과 같이 EXIF 메타데이터를 지원하는 장치에서 찍힌 이미지만 EXIF 데이터를 포함할 수 있습니다.
네, EXIF 데이터는 일본 전자 산업 개발 협회(JEIDA)가 설정한 표준을 따릅니다. 그러나 특정 제조업체는 추가적인 독점 정보를 포함할 수 있습니다.
JPEG 2000(JP2)은 2000년에 Joint Photographic Experts Group(JPEG) 위원회에서 원래 JPEG 표준을 대체할 목적으로 만든 이미지 압축 표준 및 코딩 시스템입니다. JPEG 2000은 파일 이름 확장자 .jp2로도 알려져 있습니다. 이는 원래 JPEG 포맷의 한계를 해결하고 우수한 이미지 품질과 유연성을 제공하기 위해 처음부터 개발되었습니다. JPC는 일반적으로 JPEG 2000 코드 스트림을 나타내는 용어로 사용되며, 이는 일반적으로 JP2 파일이나 모션 JPEG 2000 시퀀스의 MJ2와 같은 다른 컨테이너 포맷 내에서 찾을 수 있는 압축된 이미지 데이터를 나타내는 실제 바이트 스트림입니다.
JPEG 2000은 원래 JPEG 포맷에서 사용된 이산 코사인 변환(DCT)과는 달리 웨이블릿 기반 압축을 사용합니다. 웨이블릿 압축은 특히 고해상도 이미지의 경우 압축 효율성이 더 좋고 압축률이 높아도 이미지 품질이 향상되는 등 여러 가지 이점을 제공합니다. 이는 웨이블릿이 이미지가 고도로 압축될 때 DCT에서 발생할 수 있는 '블록형' 인공물이 발생하지 않기 때문입니다. 대신, 웨이블릿 압축은 이미지 품질이 더 자연스럽게 저하될 수 있으며, 이는 종종 인간의 눈에 덜 눈에 띕니다.
JPEG 2000의 주요 특징 중 하나는 동일한 파일 포맷 내에서 무손실 및 손실 압축을 모두 지원한다는 것입니다. 즉, 사용자는 품질 손실 없이 이미지를 압축하거나 손실 압축을 선택하여 더 작은 파일 크기를 얻을 수 있습니다. JPEG 2000의 무손실 모드는 의료 영상, 디지털 아카이브, 전문 사진과 같이 이미지 무결성이 중요한 응용 프로그램에 특히 유용합니다.
JPEG 2000의 또 다른 중요한 특징은 점진적 디코딩을 지원한다는 것입니다. 이를 통해 데이터가 수신됨에 따라 이미지를 점진적으로 디코딩하고 표시할 수 있으며, 이는 웹 응용 프로그램이나 대역폭이 제한된 상황에 매우 유용할 수 있습니다. 점진적 디코딩을 사용하면 전체 이미지의 저품질 버전이 먼저 표시되고, 더 많은 데이터가 사용 가능해지면 이미지 품질을 향상시키는 연속적인 개선이 이어집니다. 이는 일반적으로 이미지를 위에서 아래로 로드하는 원래 JPEG 포맷과 대조적입니다.
JPEG 2000은 또한 이미지의 다른 부분을 서로 다른 품질 수준으로 압축할 수 있는 관심 영역(ROI) 코딩을 포함하여 다양한 추가 기능을 제공합니다. 이는 이미지의 특정 영역이 다른 영역보다 더 중요하고 더 높은 충실도로 보존되어야 하는 경우에 특히 유용합니다. 예를 들어, 위성 이미지에서 관심 영역은 무손실로 압축될 수 있지만 주변 영역은 공간을 절약하기 위해 손실로 압축됩니다.
JPEG 2000 표준은 또한 무손실 및 손실 모드에서 모두 그레이스케일, RGB, YCbCr 등의 다양한 색 공간과 1비트(이진)에서 최대 16비트까지의 색 심도를 지원합니다. 이러한 유연성 덕분에 간단한 웹 그래픽에서 높은 동적 범위와 정밀한 색 표현이 필요한 복잡한 의료 영상에 이르기까지 다양한 영상 응용 프로그램에 적합합니다.
파일 구조 측면에서 JPEG 2000 파일은 파일의 다양한 정보를 포함하는 일련의 상자로 구성됩니다. 주요 상자는 파일 유형, 이미지 크기, 비트 심도, 색 공간과 같은 속성을 포함하는 JP2 헤더 상자입니다. 헤더 다음에는 메타데이터, 색 프로필 정보, 실제 압축된 이미지 데이터(코드 스트림)를 포함할 수 있는 추가 상자들이 있습니다.
코드 스트림 자체는 이미지 데이터가 어떻게 압축되고 어떻게 디코딩되어야 하는지 정의하는 일련의 마커와 세그먼트로 구성됩니다. 코드 스트림은 SOC(코드 스트림 시작) 마커로 시작하고 EOC(코드 스트림 종료) 마커로 끝납니다. 이러한 마커 사이에는 이미지와 타일의 크기를 정의하는 SIZ(이미지 및 타일 크기) 세그먼트와 압축에 사용된 웨이블릿 변환 및 양자화 매개변수를 지정하는 COD(코딩 스타일 기본값) 세그먼트를 포함한 몇 가지 중요한 세그먼트가 있습니다.
JPEG 2000의 오류 복원력은 이를 이전 버전과 구별하는 또 다른 특징입니다. 코드 스트림에는 전송 중에 발생할 수 있는 오류를 디코더가 감지하고 수정할 수 있는 오류 수정 정보가 포함될 수 있습니다. 이를 통해 JPEG 2000은 노이즈가 많은 채널을 통해 이미지를 전송하거나 데이터 손상 위험을 최소화하는 방식으로 이미지를 저장하는 데 적합한 선택이 됩니다.
많은 장점에도 불구하고 JPEG 2000은 원래 JPEG 포맷에 비해 널리 채택되지 않았습니다. 이는 부분적으로 웨이블릿 기반 압축 및 압축 해제의 계산 복잡성이 더 높기 때문이며, 이는 더 많은 처리 능력을 필요로 하고 DCT 기반 방법보다 느릴 수 있습니다. 또한 원래 JPEG 포맷은 영상 산업에 깊이 뿌리 내리고 있으며 소프트웨어와 하드웨어에서 널리 지원되어 많은 응용 프로그램에서 기본 선택이 되었습니다.
그러나 JPEG 2000은 고급 기능이 특히 유익한 특정 분야에서 틈새 시장을 찾았습니다. 예를 들어, 영화 배포를 위한 디지털 시네마에서 사용되며, 고품질 이미지 표현과 다양한 종횡비 및 프레임 속도 지원이 중요합니다. 또한 매우 큰 이미지를 처리하고 ROI 코딩을 지원하는 기능이 중요한 지리 정보 시스템(GIS)과 원격 탐사에서도 사용됩니다.
JPEG 2000으로 작업하는 소프트웨어 개발자와 엔지니어를 위해 JP2 파일의 인코딩 및 디코딩을 지원하는 여러 라이브러리와 도구가 있습니다. 가장 잘 알려진 것 중 하나는 C로 작성된 오픈 소스 JPEG 2000 코덱인 OpenJPEG 라이브러리입니다. 다른 상용 소프트웨어 패키지도 종종 최적화된 성능과 추가 기능을 제공하는 JPEG 2000을 지원합니다.
결론적으로 JPEG 2000 이미지 포맷은 우수한 압축 효율성, 무손실 및 손실 압축 지원, 점진적 디코딩, 고급 오류 복원력을 포함하여 원래 JPEG 표준에 비해 다양한 기능과 개선 사항을 제공합니다. 대부분의 주류 응용 프로그램에서 JPEG를 대체하지는 않 았지만 고품질 이미지 저장 및 전송이 필요한 산업에서 가치 있는 도구 역할을 합니다. 기술이 계속 발전하고 더욱 정교한 영상 솔루션에 대한 필요성이 커짐에 따라 JPEG 2000은 신규 및 기존 시장에서 채택이 증가할 수 있습니다.
이 변환기는 전적으로 브라우저에서 실행됩니다. 파일을 선택하면 메모리로 읽어와 선택한 형식으로 변환됩니다. 그런 다음 변환된 파일을 다운로드할 수 있습니다.
변환은 즉 시 시작되며 대부분의 파일은 1초 이내에 변환됩니다. 파일이 크면 더 오래 걸릴 수 있습니다.
파일은 서버에 업로드되지 않습니다. 브라우저에서 변환된 다음 변환된 파일이 다운로드됩니다. 우리는 귀하의 파일을 절대 보지 않습니다.
JPEG, PNG, GIF, WebP, SVG, BMP, TIFF 등을 포함한 모든 이미지 형식 간의 변환을 지원합니다.
이 변환기는 완전히 무료이며 항상 무료입니다. 브라우저에서 실행되기 때문에 서버 비용을 지불할 필요가 없으므로 비용을 청구할 필요가 없습니다.
예! 한 번에 원하는 만큼 많은 파일을 변환할 수 있습니다. 추가할 때 여러 파일을 선택하기만 하면 됩니다.